Tính giá trị biểu thức:
D = 3 + \(\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{1}{1+2+3+...+100}\)
Tính giá trị của biểu thức sau: \(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)
\(=\dfrac{1}{3}\left(-1+\dfrac{1}{3}\right)+\dfrac{1}{3^3}\left(-1+\dfrac{1}{3}\right)+...+\dfrac{1}{3^{99}}\left(-1+\dfrac{1}{3}\right)\)
\(=\dfrac{-2}{3}\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(9B=3+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}\)
\(9B-B=3-\dfrac{1}{3^{99}}\)
\(B=\dfrac{3-\dfrac{1}{3^{99}}}{8}\)
\(A=-\dfrac{2}{3}B=\dfrac{-2}{3}.\dfrac{3-\dfrac{1}{99}}{8}=\dfrac{\dfrac{1}{3^{100}}-1}{4}\)
Tính giá trị biểu thức \(P=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\).
\(\sqrt{1+\dfrac{1}{n}+\dfrac{1}{\left(n+1\right)^2}}\\ =\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}+\dfrac{2}{n}-\dfrac{2}{n+1}-\dfrac{2}{n\left(n+1\right)}}\\ =\sqrt{\left[1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right]^2}=\left|1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right|\)
\(\Leftrightarrow P=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=98+\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{9849}{100}\)
Tính giá trị biểu thức
P = \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ......+ \(\dfrac{1}{2^{100}}\)
\(P=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow\dfrac{1}{2}P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{2}P-P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{100}}\)
\(\Rightarrow-\dfrac{1}{2}P=\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\)
\(\Rightarrow P=\left(\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\right):\left(-\dfrac{1}{2}\right)\)
Tính giá trị biểu thức sau:
\(D=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
Tính giá trị biểu thức :
C = \(1\dfrac{1}{2}x1\dfrac{1}{3}x1\dfrac{1}{4}x...x1\dfrac{1}{100}\)
\(=>C=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}.....\cdot\dfrac{101}{100}\)
\(C=\dfrac{3\cdot4\cdot5.......\cdot101}{2\cdot3\cdot4.........\cdot100}\)
\(C=\dfrac{101}{2}\)
\(C=1\dfrac{1}{2}\cdot1\dfrac{1}{3}\cdot1\dfrac{1}{4}\cdot...\cdot1\dfrac{1}{100}\)
\(C=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}\)
\(C=\dfrac{101}{2}\)
giá trị nhỏ nhất của biểu thức \(\left(x+\dfrac{1}{3^{ }}\right)^2+\dfrac{1}{100}\)là
A.\(\dfrac{-1}{2}\) B.\(\dfrac{1}{100}\)
C.\(\dfrac{-1}{100}\) D.\(\dfrac{81}{100}\)
GẤP LẮM MN ƠI
Tính giá trị của biểu thức sau: \(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)
\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-...-\dfrac{1}{5^{99}}+\dfrac{1}{5^{100}}\)
\(=-\dfrac{1}{5}\left(1-\dfrac{1}{5}\right)-\dfrac{1}{5^3}\left(1-\dfrac{1}{5}\right)-...-\dfrac{1}{5^{99}}\left(1-\dfrac{1}{5}\right)\)
\(=\left(1-\dfrac{1}{5}\right)\left(-\dfrac{1}{5}-\dfrac{1}{5^3}-...-\dfrac{1}{5^{99}}\right)\)
\(=\left(\dfrac{1}{5}-1\right)\left(\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\right)\)
Mặt khác:
\(F=\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(25F=5+\dfrac{1}{5}+...+\dfrac{1}{5^{97}}\)
\(25F-F=5-\dfrac{1}{5^{99}}\)
\(F=\dfrac{5-\dfrac{1}{5^{99}}}{24}\)
\(\Rightarrow A=\left(\dfrac{1}{5}-1\right).F\)
\(=\dfrac{-4}{5}.\dfrac{5-\dfrac{1}{5^{99}}}{24}=\dfrac{\dfrac{1}{5^{99}}-5}{5.6}=\dfrac{\dfrac{1}{5^{100}}-1}{6}\)
Tính giá trị của biểu thức:
\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Nhanh nhé mình cần gấp lắm!!!
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên