Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh
Xem chi tiết
Nguyễn Thái Thịnh
7 tháng 2 2022 lúc 16:34

\(BPT\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\ge\dfrac{\left(3x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow x^2-x-2x+2-3x^2-3x-2x-2-2x^2-2\ge0\)

\(\Leftrightarrow-4x^2-8x-2\ge0\)

\(\Leftrightarrow x^2+2x+\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\left(x+1\right)^2-\dfrac{1}{2}\ge0\)

Vậy bất phương trình luôn đúng \(\forall x\).

Ami Mizuno
7 tháng 2 2022 lúc 16:37

ĐKXĐ: \(x\ne1,-1\)

Ta có: \(\dfrac{x-2}{x+1}\ge\dfrac{3x+2}{x-1}-2\)

\(\dfrac{x-2}{x+1}\ge\dfrac{3x+2-2\left(x-1\right)}{x-1}\)

\(\dfrac{x-2}{x+1}-\dfrac{3x+2-2x+2}{x-1}\ge0\)

\(\dfrac{x-2}{x+1}-\dfrac{x+4}{x-1}\ge0\)

\(\dfrac{\left(x-2\right)\left(x-1\right)-\left(x-4\right)\left(x+1\right)}{x^2-1}\ge0\)

\(\dfrac{x^2-3x+2-x^2+3x+4}{x^2-1}\ge0\)

\(\dfrac{6}{x^2-1}\ge0\)

\(\Rightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)(TM)

☆Châuuu~~~(๑╹ω╹๑ )☆
7 tháng 2 2022 lúc 16:32

Biểu thức vế trái có nghĩa khi 

 \(x\ne-2;x\ne1\\ \dfrac{x-2}{x+2}+\dfrac{x+1}{x-1}\Leftrightarrow\dfrac{x-2}{x+2}+\dfrac{x+1}{x-1}-2>0\\ \dfrac{\left(x-2\right)\left(x-1\right)+\left(x+2\right)\left(x+1\right)-2\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}\\ >0\\ \Leftrightarrow\dfrac{8-2x}{\left(x+2\right)\left(x-1\right)}>0\\ \Leftrightarrow\dfrac{4-x}{\left(x+2\right)\left(x-1\right)}>0\)  

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-4\right)< 0\) 

Lập bảng xét dấu

x-214
x+2- 0 +        +          +
x-1-     -0      +          +
x-4-     -        -     0   +
VT-  0 +0      -     0   +

Vậy nghiệm của bất pt là 

\(x< -2.hay.1< x< 4\) 

An in
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 23:05

1: \(\Leftrightarrow\dfrac{3+2x-2}{x-1}>0\)

\(\Leftrightarrow\dfrac{2x+1}{x-1}>0\)

=>x>1 hoặc x<-1/2

2: \(\Leftrightarrow\dfrac{1-6x-2}{3x+1}< =0\)

\(\Leftrightarrow\dfrac{6x+1}{3x+1}>=0\)

=>x>1/3 hoặc x<=-1/6

Uyên Nguyễn
Xem chi tiết
8/5_06 Trương Võ Đức Duy
Xem chi tiết
Hồ Nhật Phi
5 tháng 4 2022 lúc 9:06

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).

Kiều Vũ Linh
5 tháng 4 2022 lúc 9:14

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)

\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)

\(\Leftrightarrow4-2x-6x-12\le3x-51\)

\(\Leftrightarrow-11x\le-43\)

\(\Leftrightarrow x\ge\dfrac{43}{11}\)

Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)

\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)

\(\Leftrightarrow0x\le-10\) (vô lý)

Vậy \(S=\varnothing\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 13:19

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

Kinder
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 17:34

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)

fghj
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 17:30

ĐK: \(x\ge2\)

\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)

\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+1}\ge0\)

\(\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge1\end{matrix}\right.\)

Kết hợp điều kiện xác định ta được \(x\ge2\)

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Hoàng Huy
Xem chi tiết
Trúc Giang
24 tháng 7 2021 lúc 19:51

undefined

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 20:04

Ta có: \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}\)

\(\Leftrightarrow2\left(x-1\right)-3\left(3x+5\right)\ge6-4x-5\)

\(\Leftrightarrow2x-2-9x-15-6+4x+5\ge0\)

\(\Leftrightarrow-3x\ge18\)

hay \(x\le-6\)

Ma Tiến Khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 8:47

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1