Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Vũ
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
phan thanh thao
Xem chi tiết
Lee Hieu
21 tháng 1 2016 lúc 21:18

b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM

C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang

 

 

 

Đặng Khánh
Xem chi tiết
😈tử thần😈
15 tháng 5 2021 lúc 21:54

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

Nguyễn Lê Phước Thịnh
15 tháng 5 2021 lúc 21:54

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

Nguyễn Lê Phước Thịnh
15 tháng 5 2021 lúc 21:55

b) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=6^2+8^2=100\)

hay EF=10(cm)

Ta có: ΔHED\(\sim\)ΔDEF(cmt)

nên \(\dfrac{DH}{FD}=\dfrac{ED}{EF}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow DH=\dfrac{DE\cdot DF}{EF}=\dfrac{6\cdot8}{10}=\dfrac{48}{10}=4.8\left(cm\right)\)

Vậy: EF=10cm; DH=4,8cm

thanimtje
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 20:17

Bạn ghi lại đề đi bạn

nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 10:20

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

pourquoi:)
15 tháng 5 2022 lúc 10:26

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

Bùi Minh Trí
Xem chi tiết
Nguyễn Thành Vinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:05

a: Xét ΔEDH và ΔEKH có

ED=EK

\(\widehat{DEH}=\widehat{KEH}\)

EH chung

Do đó: ΔEDH=ΔEKH

Suy ra: DH=DK

b: Ta có: ΔEDH=ΔEKH

nên \(\widehat{EDH}=\widehat{EKH}\)

hay \(\widehat{EKH}=90^0\)

BFF_HAI1
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
26 tháng 3 2023 lúc 19:50

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

Trần Giang Châu
Xem chi tiết