Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
BFF_HAI1

Cho tam giác DEF cân tại D. Kẻ DH vuông góc EF (H thuộc EF) Chứng minh tam giác HED bằng tam giác HFD Kẻ HM vuông góc DE (M thuộc DE) và HN vuông góc DF (N thuộc DF). Chứng minh tam giác DMN cân tại D và MN song song với EF

『Kuroba ム Tsuki Ryoo...
26 tháng 3 2023 lúc 19:50

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 


Các câu hỏi tương tự
Meh Paylak
Xem chi tiết
Thời Khi Cuồng Tam
Xem chi tiết
Thời Khi Cuồng Tam
Xem chi tiết
MAGIC
Xem chi tiết
nhung phan
Xem chi tiết
HOÀNG MINH  KHÔI
Xem chi tiết
Võ Thùy Linh
Xem chi tiết
Nguyễn Hoàng Giang
Xem chi tiết
Khang Quách
Xem chi tiết