Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Anh Tuấn
Xem chi tiết
Ben 10
4 tháng 8 2017 lúc 15:51

làm tương tự

Cho tam giác ABC vuông tại A,trung tuyến AM,Gọi I là trung điểm của AM,kéo dài tia BI cắt AC tại K,Gọi F đối xứng với K qua I,Chứng minh BF = FK,Gọi N là trung điểm của KC,Chứng minh AFMN là hình thang cân,Chứng minh K là trung điểm của AN,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Bài làm

Cho tam giác ABC vuông tại A,trung tuyến AM,Gọi I là trung điểm của AM,kéo dài tia BI cắt AC tại K,Gọi F đối xứng với K qua I,Chứng minh BF = FK,Gọi N là trung điểm của KC,Chứng minh AFMN là hình thang cân,Chứng minh K là trung điểm của AN,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

.....................

k mk nhé

Võ Thị Quỳnh Giang
4 tháng 8 2017 lúc 15:55

hình như đề sai hay sao ấy. đã cho tg ABC vuông cân tại A. đg cao AH r còn có đg trung tuyến AM

Nguyễn Phương Linh
4 tháng 8 2017 lúc 15:56

AB vuông góc AC

HN vuông góc AC

=> AB//HN(từ vuông góc đến song song)

=> ABHN là hình thang

mà góc A = 90

=> ABHN là hthang vuông

ủa mà ABHN là hthang vuông mà bạn 

Kim Lê Khánh Vy
Xem chi tiết
Quốc An Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 14:37

Gọi O là giao của EF và AH, K là giao AM và EF

Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn

Do đó \(OE=OF=OH=OA\)

\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)

Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)

Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)

Vậy AM vuông góc EF

Lê Thị Thảo Uyên
Xem chi tiết
jfbdfcjvdshh
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 9:20

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O

Khang Hoàng
Xem chi tiết
Lê Song Phương
16 tháng 8 2023 lúc 6:41

 Ta có \(HN\perp AC\) và \(AB\perp AC\) nên AB//HN. Do đó tứ giác ABHN là hình thang        (1)

 Mặt khác, tam giác ABC vuông tại A có trung tuyến AM nên \(AM=\dfrac{1}{2}BC=BM\), suy ra tam giác MAB cân tại M hay \(\widehat{ABH}=\widehat{NAB}\)           (2)

 Từ (1) và (2), ta suy ra tứ giác ABHN là hình thang cân. (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2017 lúc 16:07

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác ADHE, ta có:

∠ A = 90 0  (gt)

∠ (ADH) =  90 0  (vì HD ⊥ AB)

∠ (AEH) =  90 0  (vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).

+ Xét ∆ ADH và  ∆ EHD có :

DH chung

AD = EH ( vì ADHE là hình chữ nhật)

∠ (ADN) =  ∠ (EHD) =  90 0

Suy ra:  ∆ ADH =  ∆ EHD (c.g.c)

⇒  ∠ A 1 =  ∠ (HED)

Lại có:  ∠ (HED) +  ∠ E 1 =  ∠ (HEA) =  90 0

Suy ra:  ∠ E 1 +  ∠ A 1 =  90 0

∠ A 1 = ∠ A 2 (chứng minh trên) ⇒  ∠ E 1 +  ∠ A 2 =  90 0

Gọi I là giao điểm của AM và DE.

Trong  ∆ AIE ta có:  ∠ (AIE) = 180o – ( ∠ E 1 +  ∠ A 2 ) = 180 0  -  90 0  =  90 0

 

Vậy AM ⊥ DE.

Dũng Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 11:10

loading...  loading...  loading...  

Thanh Bình
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 8:15

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

Phương Linh
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 17:06

ĐIểm $M$ là điểm nào thế bạn?