cho A^3 +B^3 =2 chứng minh 0<a+b< hoặc bằng 2
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Bài 1 giải các pt sau và diễn tập nghiệm trên trục số a) 2x-6>0 b) -3x+9>0 c)3(x-1)+5>(x+1)+3 d)x/3 - 1/2>x/6 Bài 2:a)cho a>b chứng minh 3a+7>3b+7 b)cho a >b chứng minh a+3>b+1 c) cho 5a -1>5b-1 hãy so sánh a và b Bài 3: 2x(x+5)=0 b) X^2-4=0 d) (x-5)(2x+1)+(x-5)(x+6)=0 Ở bài 1 câu a có dấu hoặc bằng nữa nha bài 2 câu c cũng vậy
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
Bài 1: Cho a,b>0. Chứng minh \(\sqrt[3]{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}< \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\)
Bài 2: Cho a,b>0. Chứng minh \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\ge\frac{2\sqrt{2}}{\sqrt{a+b}}\)
Bài 3: Cho a,b,c>0. Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
Cho a + b > 0, chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
Sửa: Cho a+b<0
\(BĐT\Leftrightarrow\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{a^3+b^3}{2}\\ \Leftrightarrow2\left(a+b\right)^3\ge8\left(a^3+b^3\right)\\ \Leftrightarrow2\left(a^3+b^3\right)+6ab\left(a+b\right)\ge8\left(a^3+b^3\right)\\ \Leftrightarrow6ab\left(a+b\right)-6\left(a^3+b^3\right)\ge0\\ \Leftrightarrow6\left[ab\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\right]\ge0\\ \Leftrightarrow6\left(a+b\right)\left(-a^2+2ab-b^2\right)\ge0\\ \Leftrightarrow-6\left(a+b\right)\left(a-b\right)^2\ge0\left(\text{luôn đúng do }-6< 0;a+b< 0\right)\)
Dấu \("="\Leftrightarrow a=b< 0\)
** Bạn lưu ý lần sau viết đề bằng công thức toán (biểu tượng $\sum$ bên trái màn hình) để đề trông rõ ràng hơn $\Rightarrow$ khả năng được giải đáp cao hơn.
Sửa đề: CMR $\frac{a^3}{b}+\frac{b^3}{a}\geq 2$
Lời giải:
Áp dụng BĐT AM-GM: $\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}$
$\geq \frac{(a^2+b^2)^2}{2ab}\geq \frac{2ab(a^2+b^2)}{2ab}=a^2+b^2(1)$
Mà:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$a^2+b^2\geq 2ab$
$\Rightarrow 2(a^2+b^2)+2\geq 2(a+b+ab)=6$
$\Rightarrow a^2+b^2\geq 2(2)$
Từ $(1);(2)$ ta có đpcm.
Cách khác:
Áp dụng BĐT AM-GM:
$\frac{a^3}{b}+b+1\geq 3a$
$\frac{b^3}{a}+a+1\geq 3b$
$\frac{a^3}{b}+\frac{b^3}{a}+ab\geq 3ab$
Cộng theo vế:
$\frac{a^3}{b}+\frac{b^3}{a}+(a+b+ab)+2\geq 3(a+b+ab)$
$\Leftrightarrow 2(\frac{a^3}{b}+\frac{b^3}{a})+3+2\geq 9$
$\Rightarrow \frac{a^3}{b}+\frac{b^3}{a}\geq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=1$
Cho hai số nguyên a,b thỏa \(a^3+b^3>0\).
a) Chứng minh \(a^3+b^3\ge a+b>0\)
b) Chứng minh \(a^3+b^3\ge a^2+b^2\)
Câu này ở trong đề chuyên toán trường phổ thông năng khiếu ở HCM năm nay này.
Với đề cho số nguyên chứ không phải số hữu tỉ nhé bạn.
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
cho a+b =1 và ab khác 0. Chứng minh a/b^3-1 + b/a^3-1 =2(ab-2)/a^2.b^2+3