Tìm min :
a) \(K=a^2+b^2-2a+2b+2017\)
b) \(H=3x^2+9y^2-6xy-2x+2016\)
Tìm giá trị nhỏ nhất:
A = a2 + b2 - 2a + 2b + 2017.
B = 3x2 + 9y2 - 6xy - 2x + 2016
Tìm min:
a) H = x2 - 4x + 16
b) K = 2x2 + 9y2 - 6xy - 8x - 12y + 2018
a) \(H=x^2-4x+16\)
\(H=\left(x+2\right)^2+12\ge12\)
vậy min H=12 \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Tìm min:
a) H = x2 - 4x + 16
b) K = 2x2 + 9y2 - 6xy - 8x - 12y + 2018
Tìm max:
a) P = - x2 - 4x +16
b) Q = - x2 + 2xy - 4y2 + 2x + 10y - 2017
Nỗi hứng lm cho vui!
Bài 1:
a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)
Vì \(\left(x-2\right)^2\ge0\) => H \(\ge\) 12
=> Dấu = xảy ra <=> \(x=2\)
b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)
= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)
= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)
= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)
Vì \(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)
Bài 2:
a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)
= \(-\left(x+2\right)^2+20\le20\)
=> Dấu = xảy ra <=> \(x=-2\)
b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)
= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)
= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)
= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)
Vì \(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)
Tìm min:
a) H = x2 - 4x + 16
b) K = 2x2 + 9y2 - 6xy - 8x - 12y + 2018
a) H=x2 - 4x +16
<=> H=x2 -4x + 4 + 12
<=> H=(x-2)2 +12 \(\ge12\)
Vậy Min H = 12
Dấu "=" xảy ra khi x=2
\(K=x^2-6xy+9y^2+4\left(x-3y\right)+4+x^2-12x+36+1978\)
\(K=\left(x-3y\right)^2+4\left(x-3y\right)+2^2+\left(x-6\right)^2+1978\)
\(K=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\ge1978\)
Vậy Min K =1978
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=\dfrac{8}{3}\\x=6\end{matrix}\right.\)
Cái phần cuối câu K nó bị gì đó , nếu không thấy thì bạn tự giải tiếp nhen
Tìm giá trị nhỏ nhất:
a. x2+y2-2xy+x-y-2016
b. 2x2+9y2+3z2+6xy-2xz+6yz+2017
c.(x+1)(x+2)(x+3)(x+4)+15
Tìm Min : A=2x^2 + 9y^2 - 6xy - 6x - 12y + 2015
a) Tìm min \(M=2x^2+9y^2-16x-12y+2017\)
b) Tìm max : \(N=-x^2-4y^2+6y+2x-2016\)
Mình làm câu a thôi nha câu b tương tự nha bạn :)
\(M=2x^2+9y^2-16x-12y+2017\)
\(=\left(2x^2-16x\right)+\left(9y^2-12y\right)+2017\)
\(=2\left(x^2-8x+4^2\right)+\left(9y^2-12y+2^2\right)+1981\)
\(=2\left(x-4\right)^2+\left(3y-2\right)^2+1981\)
Dấu "=" xảy ra khi và chỉ khi \(\left[\begin{matrix}x-4=0\\3y-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy \(Min_M=1981\) khi và chỉ khi \(\left\{\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\).
a)(x-4)2 + (x-4)2 + (3y-2)2 +2017 -32-4
gtnn = 1981
b) tt
Tìm GTNN
B=2x^2+9y^2-6xy-6x-12y+2016
Tìm GTNN
B=2x^2+9y^2-6xy-6x-12y+2016