a) H=x2 - 4x +16
<=> H=x2 -4x + 4 + 12
<=> H=(x-2)2 +12 \(\ge12\)
Vậy Min H = 12
Dấu "=" xảy ra khi x=2
\(K=x^2-6xy+9y^2+4\left(x-3y\right)+4+x^2-12x+36+1978\)
\(K=\left(x-3y\right)^2+4\left(x-3y\right)+2^2+\left(x-6\right)^2+1978\)
\(K=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\ge1978\)
Vậy Min K =1978
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=\dfrac{8}{3}\\x=6\end{matrix}\right.\)
Cái phần cuối câu K nó bị gì đó , nếu không thấy thì bạn tự giải tiếp nhen
a) \(H=x^2-4x+16\)
\(\Leftrightarrow H=\left(x^2-2.x.2+2^2\right)+12\)
\(\Leftrightarrow H=\left(x-2\right)^2+12\)
Vậy GTNN của \(H=12\) khi \(x-2=0\Leftrightarrow x=2\)
b) \(K=2x^2+9y^2-6xy-8x-12y+2018\)
\(\Leftrightarrow K=x^2+x^2+9y^2-6xy+4x-12x-12y+36+1982\)
\(\Leftrightarrow K=\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+\left(x^2-12x+36\right)+1982\)
\(\Leftrightarrow K=\left[x^2-2.x.3y+\left(3y\right)^2\right]+\left(4x-12y\right)+\left(x^2-2.x.6+6^2\right)+1982\)
\(\Leftrightarrow K=\left(x-3y\right)^2+4\left(x-3y\right)+\left(x-6\right)^2+1982\)
\(\Leftrightarrow K=\left[\left(x-3y\right)^2+2.\left(x-3y\right).2+2^2\right]+\left(x-6\right)^2+1978\)
\(\Leftrightarrow K=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\)
Vậy GTNN của \(K=1978\) khi \(\left\{{}\begin{matrix}x-3y+2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6-3y+2=0\\x=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{3}\\x=6\end{matrix}\right.\)