Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Hữu
Xem chi tiết
Bùi Nam Khánh
Xem chi tiết
Eren
18 tháng 1 2022 lúc 22:16

Chuyển vế sang, xét \(\left(\dfrac{1}{1+ab}-\dfrac{1}{a^2+1}\right)+\left(\dfrac{1}{1+ab}-\dfrac{1}{b^2+1}\right)=\dfrac{a^2-ab}{\left(1+ab\right)\left(a^2+1\right)}+\dfrac{b^2-ab}{\left(1+ab\right)\left(b^2+1\right)}\)

\(=\dfrac{a-b}{1+ab}.\left(\dfrac{a}{a^2+1}-\dfrac{b}{b^2+1}\right)=\dfrac{\left(a-b\right)^2\left(1-ab\right)}{\left(1+ab\right)\left(a^2+1\right)\left(b^2+1\right)}\)

Dễ thấy (a - b)2 không âm, (a2 + 1) > 0, (b2 + 1) > 0

nên bđt trên phụ thuộc vào dấu của \(\dfrac{1-ab}{1+ab}\)

 

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 22:11

Đề bài sai, chiều của BĐT này ko phụ thuộc vào b mà phụ thuộc vào ab

Ví dụ: với \(b=\dfrac{1}{2};a=6\) (b thỏa mãn \(-1\le b\le1\)) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}>\dfrac{2}{1+ab}\)

Nhưng với \(b=\dfrac{1}{2};a=1\) (vẫn thỏa mãn \(-1\le b\le1\) ) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}< \dfrac{2}{1+ab}\)

Nue nguyen
Xem chi tiết
 Mashiro Shiina
3 tháng 2 2018 lúc 13:23

Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:

\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)

Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Akai Haruma
4 tháng 2 2018 lúc 14:14

Lời giải:

Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)

Có:

\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)

\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)

\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)

\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)

\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)

Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)

Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)

Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)

Ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

Lê Thị Thu Hà
Xem chi tiết
Phùng Khánh Linh
21 tháng 4 2018 lúc 10:11

Áp dụng BĐT Cô - si : x2 + y2 ≥ 2xy

=> \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\)\(2.\dfrac{a}{c}\) ( 1)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)\(2.\dfrac{b}{a}\) ( 2)

\(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\)\(2.\dfrac{c}{b}\) ( 3)

Cộng từng vế của ( 1 , 3 , 3) , ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)\(2.\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)

=> ĐPCM

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 14:36

Áp dụng BĐT cosi cho 3 số a,b,c dương:

\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\ \dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\ \dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2a}{a}}=2c\)

Cộng vế theo vế 3 BĐT trên

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\\ \Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

Dấu \("="\Leftrightarrow a=b=c\)

Lấp La Lấp Lánh
13 tháng 10 2021 lúc 14:37

Áp dụng BĐT Cauchy cho 2 số dương:

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}.b}=2a\\\dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2}{c}.c}=2b\\\dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2}{a}.a}=2c\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\left(đpcm\right)\)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

Trần Thiên Kim
Xem chi tiết
ngonhuminh
9 tháng 4 2017 lúc 13:59

Lời giải

\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)

\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)

\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)

\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)

\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm

Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem

Phan Cả Phát
6 tháng 4 2017 lúc 20:50

Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé

bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2

Ta sẽ giả sử

\(a^2+\dfrac{1}{a^2}\ge2\)(2)

\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)

BĐT (2) đúng suy ra BĐT (1) đúng

Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)

CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)

\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)

Nhân vế theo vế của (*) , (**) , (***) ta được

\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 1

ngonhuminh
9 tháng 4 2017 lúc 13:26

a,b,c>0 nó là đề khác cái đề này a,b,c khác 0 Phan Cả Phát

Lời giải phải đúng với đề

Có thể cái đề này sai so với đề khác (trên mạng hoặc ở đâu đó, cái đó không quan trọng và không nên quan tâm)

p/s: Nội Hàm cái đề này không sai --> chẳng lý do gì lại sửa đề cả

Vũ Ngọc Mai
Xem chi tiết
Nguyễn Tấn Dũng
8 tháng 4 2017 lúc 8:25

Vì a,b,c là các số dương \(\Rightarrow\) a,b,c > 0

Vì a,b,c > 0,Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta được:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)\(\geq\) \(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(1)

\(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\) = \(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)=\(\dfrac{a+b+c}{2}\)(2)

Từ (1),(2) \(\Rightarrow\) \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) \(\geq\) \(\dfrac{a+b+c}{2}\)

Dấu = xảy ra khi và chỉ khi a=b=c.

Nguyễn Thị Ngọc Thơ
5 tháng 1 2018 lúc 20:02

Cách 2 : Vì a,b,c là các số dương \(\Rightarrow\) \(\dfrac{a+b}{4}>0,\dfrac{b+c}{4}>0,\dfrac{c+a}{4}>0\)

Áp dụng bất dẳng thức AM - GM cho các số không âm , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)

\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế theo vế , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{2\left(a+b+c\right)}{4}\ge a+b+c\)

Trừ cả hai vế cho \(\dfrac{a+b+c}{2}\) , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\left(đpcm\right)\)

Châu Hoàn Bảo Trần
Xem chi tiết