Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Ngọc Mai

Cho a,b,c là các số dương. Chứng minh bđt:

\(\dfrac{a^2}{b+c} + \dfrac{b^2}{c+a} + \dfrac{c^2}{a+b} >= \dfrac{a+b+c}{2}\)

Nguyễn Tấn Dũng
8 tháng 4 2017 lúc 8:25

Vì a,b,c là các số dương \(\Rightarrow\) a,b,c > 0

Vì a,b,c > 0,Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta được:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)\(\geq\) \(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(1)

\(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\) = \(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)=\(\dfrac{a+b+c}{2}\)(2)

Từ (1),(2) \(\Rightarrow\) \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) \(\geq\) \(\dfrac{a+b+c}{2}\)

Dấu = xảy ra khi và chỉ khi a=b=c.

Nguyễn Thị Ngọc Thơ
5 tháng 1 2018 lúc 20:02

Cách 2 : Vì a,b,c là các số dương \(\Rightarrow\) \(\dfrac{a+b}{4}>0,\dfrac{b+c}{4}>0,\dfrac{c+a}{4}>0\)

Áp dụng bất dẳng thức AM - GM cho các số không âm , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)

\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế theo vế , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{2\left(a+b+c\right)}{4}\ge a+b+c\)

Trừ cả hai vế cho \(\dfrac{a+b+c}{2}\) , ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\left(đpcm\right)\)


Các câu hỏi tương tự
Quốc Khánh
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Lê Thế Tài
Xem chi tiết
Trần Minh Đức
Xem chi tiết
Hiếu Cao Huy
Xem chi tiết
guard
Xem chi tiết
Nguyễn Đức Tâm
Xem chi tiết
Nguyễn Đức Tâm
Xem chi tiết
guard
Xem chi tiết