Vì a,b,c là các số dương \(\Rightarrow\) a,b,c > 0
Vì a,b,c > 0,Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta được:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)\(\geq\) \(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(1)
Mà \(\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\) = \(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)=\(\dfrac{a+b+c}{2}\)(2)
Từ (1),(2) \(\Rightarrow\) \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) \(\geq\) \(\dfrac{a+b+c}{2}\)
Dấu = xảy ra khi và chỉ khi a=b=c.
Cách 2 : Vì a,b,c là các số dương \(\Rightarrow\) \(\dfrac{a+b}{4}>0,\dfrac{b+c}{4}>0,\dfrac{c+a}{4}>0\)
Áp dụng bất dẳng thức AM - GM cho các số không âm , ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)
\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
Cộng vế theo vế , ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{2\left(a+b+c\right)}{4}\ge a+b+c\)
Trừ cả hai vế cho \(\dfrac{a+b+c}{2}\) , ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\left(đpcm\right)\)