Cho \(\Delta ABC\) , kẻ AH\(\perp\)BC tại H
a. Chứng minh: AH<AB +\(\dfrac{AC}{2}\)
b. Kẻ BK\(\perp\)AC tại K, CI\(\perp\)AB tại I. Chứng minh AH+BK+CI nhỏ hơn chu vi của \(\Delta ABC\)
Cho Δ ABC cân tại A(A<90độ).Kẻ AH⊥BC(H∈BC).Chứng minh:
a)ΔABH=ΔACH
b)Từ H kẻ HM⊥AB(M∈AB),HN⊥AC(N∈AC). Chứng minh :AM=AN
c)ΔBHM=ΔCHN
d)MN//BC
e)Biết BC=12cm,AH=8cm,MH=4,8cm. Tính AB,AN?
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH là cạnh chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)
⇒AM=AN(hai cạnh tương ứng)
c) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)
Xét ΔBMH và ΔCNH có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)
d) Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)
e)
*Tính AB
Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)
Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=BH^2+AH^2\)
hay \(AB^2=6^2+8^2=100\)
⇒\(AB=\sqrt{100}=10cm\)
Vậy: AB=10cm
Cho \(\Delta\)ABC vuông tại A,kẻ đường cao AH
1)Chứng minh:\(\Delta\)ABC đồng dạng \(\Delta\)HAC
2)Cho AB=6cm,AC=8cm.Tính BC,AH
3)Từ H kẻ HE\(\perp\)AC.Chứng minh:\(^{HE^2}\)=EA.EC
4)Gọi I là trung điểm của AH,EI cắt AB tại F.Chứng minh:\(^{AH^2}\)=FA.FB+EA.EC
a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :
\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)
b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)
c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)
\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)
a) Xét ΔHAC và ΔABC có:
∠(ACH ) là góc chung
∠(BAC)= ∠(AHC) = 90o
⇒ ΔHAC ∼ ΔABC (g.g)
b) Xét ΔHAD và ΔBAH có:
∠(DAH ) là góc chung
∠(ADH) = ∠(AHB) = 90o
⇒ ΔHAD ∼ ΔBAH (g.g)
c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.
⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)
Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)
∠(DEA)= ∠(BAH)
Xét ΔEAD và ΔBAC có:
∠(DEA)= ∠(BAH)
∠(DAE ) là góc chung
ΔEAD ∼ ΔBAC (g.g)
d) ΔEAD ∼ ΔBAC
ΔABC vuông tại A, theo định lí Pytago:
Theo b, ta có:
1) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
Cho tam giác ABC cân tại A. Kẻ AH⊥BC , H∈BC
a) Chứng minh ΔABH = ΔACH
b) Kẻ HM⊥AB, M∈AB ; HN⊥AC, N∈AC . Chứng minh MB = NC
c) Gọi O là giao điểm AH và MN. Chứng minh MN//BC
Cho ΔABC cân tại A. Kẻ AH ⊥ BC ( H∈ BC)
a) Chứng mnh HB = HC
b) Kẻ HM⊥AB(M∈AB), HN⊥AC(N∈AC). Chứng minh ΔAMH = ΔANH
c) Tính diện tích ΔABC biết AB = 10cm, AH = 8cm
d) So sánh ABC và AMN, từ đó chứng minh MN song song với BC
a) Xét △ABC,ta có :△ABC cân tại A nên
AB=AC, ∠ABC = ∠ACB( t/c tam giác cân)
Vì AH⊥BC nên ∠AHB = ∠AHC
# Xét △AHB vs △AHC, ta có :
∠AHB=∠AHC(=90o)
AB=AC
∠ABC = ∠ACB
⇒△AHB = △AHC(ch-gn)
⇒HB=HC( 2 cạnh tương ứng )
b)Vì △AHB = △AHC(cmt) nên ∠HAB = ∠HAC(2 góc tương ứng)
Vì HM ⊥ AB nên ∠HMA =90o
Vì HN ⊥ AC nên ∠HMB =90o
#Xét △AHM vs △AHN, ta có:
∠AHM =∠AHN(=90o)
AH là cạnh chung
∠MAH=∠NAH(cmt)
⇒△AHM = △AHN (ch-gn)
c) Lúc nữa.
Cho \(\Delta ABC\) cân tại A, lấy điểm M là trung điểm của cạnh BC. Trên tia đối của MA lấy điểm D sao cho MA = MD
Chứng minh:
a) \(\Delta AMB\) và \(\Delta DMC\)
b) AC // BD
c) Kẻ AH \(\perp\) BC, DK \(\perp\) BC ( H, K \(\in\) BC ) Chứng minh BK = CH
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Cho △ ABC cân tại A, ∠A=120 0 . Kẻ AH ⊥ BC (H ∈BC)
a) Chứng minh: HA = HC.
b) Kẻ HD ⊥ AB (D ϵAB), HE ⊥ BC (E ∈AC). Chứng minh HD = HE.
c) Chứng minh Δ HDE đều.
d) Chứng minh: DE // BC
Ta có AB = AC
BD = CE
=> AB - BD = AC - CE
=> AD = AE
=>∆ADE cân tại A
=> ADE = (180° - BAC)/2 (t/c tam giác cân)
Mà ABC = (180° - BAC )/2 (∆ABC cân tại A)
=> ADE = ABC
Mà 2 góc này đồng vị
=> DE// BC
Cho \(\Delta\)ABC vuông tại A, đường cao AH (H\(\in\)BC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE \(\perp\)AC (E\(\in\)AC). Chứng minh: AE.AC=AB2-HB2
c) Kẻ HF \(\perp\)AB (F\(\in\)AB). Chứng minh: AF=AE.tanB
d) Chứng minh rằng \(\dfrac{BF}{CE}\)=\(\dfrac{AB^3}{AC^3}\)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
Cho \(\Delta ABC\) nhọn (AB < AC). Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia cX song song với AB. Trên tia Cx, lấy điểm D sao cho CD = AB.
a) Chứng minh \(\Delta ABC=\Delta DCB\)
b) Chứng minh AC // BD\
c) Kẻ \(AH\perp BC\) tại H, \(DC\perp BK\) tại K. Chứng minh AH = DK.
d) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của AD.
Cho ΔABC cân tại A (∠A<90 độ). Vẽ AH ⊥ BC tại H.
a. Chứng minh ΔAHB=ΔAHB.
b. Kẻ HM ⊥ AC tại M. Trên tia đối tia HM lấy điểm N sao cho HM=HN. Chứng minh BN // AC.
c. Kẻ HQ ⊥ AB tại Q. Chứng minh BC là đường trung trực của NQ.
b) Vì ΔAHC = ΔAHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét ΔBHN và ΔCHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> ΔBHN = ΔCHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c)