Giải pt
\(\left(\dfrac{-1}{x}+3x\right)\left(1\dfrac{2}{3}x\right).1999=0\)
\(\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)1999=0\)
giải pt
\(A=\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)\cdot1999=0\)
Để GTBT = 0 \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}+3x=0\\1-\dfrac{2}{3}x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{1}{2}\\-\dfrac{2}{3}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{3}{2}\end{matrix}\right.\)thì GTBT trên bằng 0.
\(\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)1999=0\)\(\Leftrightarrow\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}+3x=0\\1-\dfrac{2}{3}x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=\dfrac{3}{2}\)
Chúc bạn học tốt . Nhớ tick cho mình nha Đỗ Thanh Huyền
Giải pt sau
\(\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{2x+4}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
1)Giải pt: \(2\cdot\left(x+\dfrac{1}{x}\right)^2+\left(x^2+\dfrac{1}{x^2}\right)^2-\left(x^2+\dfrac{1}{x^2}\right)\cdot\left(x+\dfrac{1}{x}\right)^2=\left(x+2\right)^2\)
2)Giải pt: \(\dfrac{|3-2x|-|x|}{|2+3x|+x-2}=5\)
3)tìm tất cả các cặp số nguyên tố(x,y) là nghiệm của pt: x2 - 2y2 - 1=0
1)\(ĐKXĐ:x\ne0\)
Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)
\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)
\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)
\(=2a+a^2-4a+4-a^2+2a=4\)
\(\Rightarrow\left(x+2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)
(1) giải pt quy về \(ax^2+bx+c=0\)
1) \(x^2=3x\) 2) \(x^2-3x=4\)
3) \(x^4-5x^2+6=0\) 4) \(x^3=9x\)
5) \(\left(x+2\right)\left(x-3\right)=x^2-4\) 6) \(\dfrac{x+11}{x^2-1}-\dfrac{x-1}{x+1}=\dfrac{2\left(x+7\right)}{x+1}\)
giúp mk vs mk cần gấp
1)
<=> \(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
x= 0
x = 3
2) <=> \(x\left(x-3\right)=4\)
=> \(x=\dfrac{4}{x}+3\)
\(2,x^2-3x=4\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)
\(\Rightarrow\)Pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)
Vậy \(S=\left\{4;-1\right\}\)
\(3,x^4-5x^2+6=0\)
Đặt \(t=x^2\left(t\ge0\right)\)
Pt trở thành
\(t^2-5t+6=0\)
\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)
\(\Rightarrow\)Pt ó 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)
\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)
Vậy \(S=\left\{\pm\sqrt{3}\right\}\)
\(4,x^3=9x\)
\(\Leftrightarrow x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
Vậy \(S=\left\{0;\pm3\right\}\)
\(5,\left(x+2\right)\left(x-3\right)=x^2-4\)
\(\Leftrightarrow x^2-3x+2x-6-x^2+4=0\)
\(\Leftrightarrow-x-2=0\)
\(\Leftrightarrow-x=2\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
Giải pt
\(1+\dfrac{2}{x-2}=\dfrac{10}{x+3}-\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(\dfrac{x^2-3x+5}{x^2-4}=-1\)
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
1) giải pt :
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
2) giải pt :
a) \(\left(5x+1\right)^2=\left(3x-2\right)^2\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
c. \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
Đặt: \(y=x+4\), ta có:
\(\left(y-1\right)^4+\left(y+1\right)^4=2\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)
\(\Leftrightarrow2y^4+12y^2=0\)
\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)
\(\Leftrightarrow y=0\)
\(\Leftrightarrow x=-4\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=1\)
Giải pt: \(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\dfrac{5+96}{x^2-16}=\dfrac{2x—1}{x+4}-\dfrac{3x-1}{4-x}\)
a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)
Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)
Suy ra: \(9-3x+10x-2=4\)
\(\Leftrightarrow7x+7=4\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)
Giải pt:
a, \(\dfrac{1}{27}.\left(x-3\right)^2-\dfrac{1}{125}.\left(x-5\right)^3=0\)
b, \(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
c, \(\left(x-3\right)^3+\left(x+1\right)^3=8.\left(x-1\right)^3\)
a: \(\Leftrightarrow\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{5}x-1\right)^3\)
=>1/3x-1=1/5x-1
=>2/15x=0
hay x=0
b: Đặt 2x+1=a; 3x-1=b
Theo đề, ta có \(\left(a+b\right)^3-a^3-b^3=0\)
=>3ab(a+b)=0
=>5x(2x+1)(3x-1)=0
hay \(x\in\left\{0;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
c: Đặt x-3=a; x+1=b
Theo đề, ta có: \(\left(a+b\right)^3=a^3+b^3\)
=>3ab(a+b)=0
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
giải hệ pt :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
Đây chắc chắn là 1 hệ pt không giải được
Lần lượt lấy (trên + dưới) và lấy (dưới - trên) được 1 hệ mới, sau đó chia vế cho vế và đặt \(\dfrac{x}{y}=t\) sẽ đưa về 1 pt không thể phân tích thành nhân tử, đồng nghĩa không thể giải hệ đã cho