trên cạnh đáy BC của \(\Delta\) cân ABC lấy điểm D và E sao cho BD = DE = EC
a) \(\widehat{BAD}=\widehat{EAC}\)
b) \(\widehat{EAC}< \widehat{DAE}\)
Cho\(\Delta\)ABC cân tại A. Trên cạnh BC lấy điểm D và E sao cho \(\widehat{BAD}\)=\(\widehat{DAE}\)=\(\widehat{EAC}\). So sánh AB và AD
Cho tam giác ABC cân tại A. Trên BC lần lượt láy 2 điểm D và E : \(\widehat{BAD}=\widehat{DAE}=\widehat{EAC}\)
a) So sánh: AB và AD
b) BD=CE; BD>DE
Bài 3: Trên cạnh đáy BC của tam giác cân ABC lấy điểm D và E sao cho BD = DE = EC. Chứng minh rằng ∠BAD=∠EAC < ∠ DAE
Xét ΔADB và ΔAEC có
AB=AC
góc B=góc C
BD=CE
=>ΔADB=ΔAEC
=>góc BAD=góc CAE
Cho tam giác ABC cân tại A, D và E \(\in\)cạnh BC sao cho BD=DE=EC
a) Chứng minh : \(\Delta ADE\)là tam giác cân
b) So sánh : AC và AD
c) So sánh : \(\widehat{EAC}\)và \(\widehat{DAE}\)
Cho \(\Delta ABC\) cân tại A. Trên cạnh đáy BC lấy các điểm D, E sao cho BD = DE = EC CM \(\widehat{BAD}< \widehat{DAE}\)
Trên cạnh BC của tam giác ABC cân tại A, lấy hai điểm D và E sao cho BD = DE = EC. CMR: góc BAD = EAC < DAE.
Bạn tìm câu hỏi tương tự thì nó có bạn nhé
ngại gõ quá :)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
=> đề sai :))
Trên đáy BC của tam giác cân ABC lấy hai điểm D và E sao cho BD=DE=EC. Chứng minh rằng : góc BAD=góc EAC < góc DAE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)
ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)
BD = EC (gt)
Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^
Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)
Cˆ=BˆC^=B^ (∆ABC cân tại A)
Nên AEBˆ>BˆAEB^>B^
∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE
Trên tia đối của tia DA lấy điểm M sao cho DM = DA
Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)
Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^
Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^
Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.
Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.
1. Cho tam giác ABC cân tại A (\(\widehat{A}\)>90 độ). Trên cạnh BC lấy 2 điểm D và E sao cho BD = DE= EC.
a) CMR: tam giác ADE cân.
b) CMR: BH=CK.
c) Gọi M là trung điểm của BC. CMR: A, M, G thẳng hàng.
d) CMR: AC>AD.
e, CMR: \(\widehat{DAE}>\widehat{DAB}\)
Cho tam giác abc cân tại a . trên cạnh bc lấy các điểm d , e sao cho bd=de=ec(d,e không trùng với b,c ) chứng minh rằng trong số 3 góc bad , dae , eac, thì dae là góc lớn nhất ?