Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Ly
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 4 2022 lúc 21:58

\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)

\(A_{min}=-1\Leftrightarrow x=6\)

\(A=\dfrac{27-12x}{x^2+9}=\dfrac{4\left(x^2+9\right)-\left(4x^2+12x+9\right)}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)

\(A_{max}=4\Leftrightarrow x=\dfrac{-3}{2}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2021 lúc 22:56

\(C=\dfrac{4\left(x^2+9\right)-4x^2-12x-9}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)

\(C_{max}=9\) khi \(x=-\dfrac{3}{2}\)

\(C=\dfrac{-x^2-9+x^2-12x+36}{x^2+9}=-1+\dfrac{\left(x-6\right)^2}{x^2+9}\ge-1\)

\(C_{min}=-1\) khi \(x=6\)

Trần Minh Hoàng
3 tháng 3 2021 lúc 22:56

Ta có \(4-C=\dfrac{4x^2+12x+9}{x^2+3}=\dfrac{\left(2x+3\right)^2}{x^2+3}\ge0\Rightarrow C\le4\).

Đẳng thức xảy ra khi và chỉ khi \(x=-\dfrac{3}{2}\).

\(C+1=\dfrac{x^2-12x+36}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\Rightarrow C\ge-1\).

Đẳng thức xảy ra khi và chỉ khi x = 6.

MEOW*o( ̄┰ ̄*)ゞ
Xem chi tiết
Trúc Giang
4 tháng 6 2021 lúc 14:38

\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2+9+27-12x}{x^2+9}-1=\dfrac{x^2-12x+36}{x^2+9}-1=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)

Dấu = xảy ra khi x = 6

Vậy:...

Kiều Bảo Anh
4 tháng 6 2021 lúc 14:42

A= \(\dfrac{27-12x}{x^2-9}\)

\(\dfrac{x^2-12x+36-x^2-9}{x^2-9}\)

\(\dfrac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)

\(\dfrac{\left(x-6\right)^2}{x^2+9}-1\)

Ta có \(\dfrac{\left(x-6\right)^2}{x^2+9}\) ≥ 0 ∀ x

⇒ \(\dfrac{\left(x-6\right)^2}{x^2+9}-1\) ≥ -1 ∀ x

Vậy AMin= -1 tại x=6

great124
Xem chi tiết
Nguyễn Anh Quân
1 tháng 3 2018 lúc 13:02

A = (x^2-12x+36) - 2

   = (x-6)^2 - 2

   >= -2

Dấu "=" xảy ra <=> x-6=0 <=> x=6

Vậy GTNN của A = -2 <=> x=6

Tk mk nha

trần tuấn khang
Xem chi tiết
Lê Xuân Bình
13 tháng 2 2019 lúc 16:13

A=\(\frac{27-12x}{x^2+9}\)=\(\frac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}-1\)\(\ge-1\)

dau bằng xảy ra khi \(\left(2x+3\right)^2=0\Leftrightarrow2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=\frac{-3}{2}\)

còn 1 trường hợp nữa cũng tương tự

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2018 lúc 13:12

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

Sorcerer_of_Dark_Magic
Xem chi tiết
Kim Mi Young
19 tháng 3 2021 lúc 21:42

A=x2−2xy+6y2−12x+2y+45

=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4

=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4

=(x−y+6)2+5(y−1)2+4

Ta có: (x−y+6)2≥0∀x,y

5(y−1)2≥0∀y

⇒(x−y+6)2+5(y−1)2+4≥4∀x,y

Dấu "=" xảy ra ⇔x=7,y=1

Vậy 

Khách vãng lai đã xóa
.........
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:22

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

mai ngoc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 21:07

a: =>x^3+2x^2-8x^2-16x+15x+30=0

=>(x+2)(x^2-8x+15)=0

=>(x+2)(x-3)(x-5)=0

=>\(x\in\left\{-2;3;5\right\}\)

b: =x^2-12x+36-3

=(x-6)^2-3>=-3

Dấu = xảy ra khi x=6

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:36

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2