Chứng tỏ phân số sau tối giản:A=2x+3/x+1
Bài 1: Chứng tỏ các phân số sau tối giản:
a) A = n+3 / 2n+7 tối giản với n ∈ N
b) B = 5n+7 / 2n+3 tối giản với n ∈ N
c) C = 2n+1 / 3n+1 tối giản với n ∈ N
Giúp với ạ cần gấp
a: Gọi d=ƯCLN(2n+7;n+3)
=>2n+7-2n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số tối giản
b: Gọi d=ƯCLN(5n+7;2n+3)
=>10n+14-10n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Với những giá trị nguyên nào của x thì phân số sau tối giản:
a, \(\dfrac{x-8}{2x-17}\)
b, \(\dfrac{x-4}{x+1}\)
Cảm ơn bạn!
chứng minh các phân số sau tối giản:
a)\(\dfrac{n+1}{2n-3}\) ; b)\(\dfrac{2n+3}{4n+8}\) ; c)\(\dfrac{3n+2}{5n+3}\)
a:
Sửa đề: \(\dfrac{n+1}{2n+3}\)
Gọi d=ƯCLN(n+1;2n+3)
=>2n+2-2n-3 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
b: Gọi d=ƯCLN(4n+8;2n+3)
=>4n+8-4n-6 chia hết cho d
=>2 chia hêt cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Chứng minh phân số sau là phân số tối giản:
a, 4n+8/2n+3 với n thuộc N
b, 7n+4/9n+5 với n thuộc N
c, 12n+1/30n+2 với n thuộc N
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
với những giá trị nguyên nào của x thì phân số sau tối giản:a,10/x+7,b,x-1/x^2
21. Tìm các số tự nhiên n để các phân số sau là phân số tối giản:
a)\(\dfrac{2n+3}{4n+1}\)
b)\(\dfrac{3n+2}{7n+1}\)
c) \(\dfrac{2n+7}{5n+2}\)
CMR: các phân số sau tối giản:
a) A = n + 1/n + 2
b) B = n + 4/2n + 9
c) C = 12n + 1/30n + 2
d) D = 21n + 4/12n + 3
a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp
nên UCLN(n+1,n+2)=1
hay A là phân số tối giản
b: Gọi a là UCLN(n+4;2n+9)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: B là phân số tối giản
c: Gọi b là UCLN(12n+1;30n+2)
\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)
Vậy: C là phân số tối giản
Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản:
a) \(\dfrac{{50}}{{85}};\) b) \(\dfrac{{23}}{{81}}\).
a) \(\dfrac{{50}}{{85}}\)
Ta có: \(50 =2.5^2; 85= 5.17\)
Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5. Do đó, \(\dfrac{{50}}{{85}}\) chưa là phân số tối giản
Ta có: \(\dfrac{{50}}{{85}} = \dfrac{{50:5}}{{85:5}} = \dfrac{{10}}{{17}}\)
b)\(\dfrac{{23}}{{81}}\)
Ta có: \(23 = 23; 81 = 3^4\)
Chúng không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1. Do đó, \(\dfrac{{23}}{{81}}\) là phân số tối giản.
chứng tỏ là phân số tối giản
\(\dfrac{2x+1}{2x+2}\) ; \(\dfrac{2x+3}{3x+2}\)
Đặt d = ƯCLN(2x+1;2x+2)
Suy ra 2x +1 ; 2x+2 chia hết cho d. Suy ra 2x +2 - 2x +1 chia hết cho d. Suy ra 1 chia hết cho d. Suy ra ƯCLN(2x+1,2x+2) =1
Vậy 2x+1/2x+2 là phân số tối giản.(đpcm).