Những câu hỏi liên quan
Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 lúc 22:34

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\ge ab.bc+bc.ca+ca.ab=abc\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Nguyễn Thiện Minh
Xem chi tiết
akai chuichi
27 tháng 2 2018 lúc 20:35

áp dụng BĐT co si cho 4 số ta có

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

\(b^4+b^4+a^4+c^4\ge4\sqrt[4]{a^4.b^4.b^4.c^4}=4ab^2c\)

\(c^4+c^4+b^4+a^4\ge4\sqrt[4]{a^4.b^4.c^4.c^4}=4abc^2\)

Cộng vế với vế ta có

\(\)4a4+4b4+4c4 ≥ 4a2bc+4ab2c+4abc2

chia cả 2 vế cho 4 ta có

a4+b4+c4 ≥ a2bc+ab2c +abc2

⇔ a4+b4+c4 ≥ abc(a+b+c) (đpcm)

Bình luận (0)
Nhã Doanh
27 tháng 2 2018 lúc 20:19

Áp dụng bất đẳng thức ta có:

\(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+a^2b^2+b^2c^2\)

mà: \(a^2b^2+b^2c^2+a^2c^2\ge ab^2c+a^2bc+abc^2=abc\left(a+b+c\right)\) \(\Leftrightarrowđpcm\)

Bình luận (0)
Phan Minh Anh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 23:12

1. Không có dấu "=" em nhé.

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:

$a< b+c\Rightarrow a^2< ab+ac$

$b< a+c\Rightarrow b^2< ba+bc$

$c< a+b\Rightarrow c^2< ca+cb$

$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$ 

Ta có đpcm. 

Bình luận (2)
Akai Haruma
4 tháng 7 2021 lúc 23:13

2.

$(x-1)(x-2)(x-3)(x-4)$

$=(x-1)(x-4)(x-2)(x-3)$

$=(x^2-5x+4)(x^2-5x+6)$

$=(x^2-5x+4)(x^2-5x+4+2)$

$=(x^2-5x+4)^2+2(x^2-5x+4)$

$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$

$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$

Vậy ta có đpcm.

Bình luận (0)
Akai Haruma
4 tháng 7 2021 lúc 23:16

3.

Áp dụng BĐT Cô-si:

$a^4+b^4\geq 2a^2b^2$

$b^4+c^4\geq 2b^2c^2$

$c^4+a^4\geq 2c^2a^2$

Cộng theo vế và thu gọn thì:

$a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2(*)$
Tiếp tục áp dụng BĐT Cô-si:

$a^2b^2+b^2c^2\geq 2|ab^2c|\geq 2ab^2c$

$b^2c^2+c^2a^2\geq 2abc^2$

$a^2b^2+c^2a^2\geq 2a^2bc$

Cộng theo vế và thu gọn:

$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)(**)$

Từ $(*); (**)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Master CV
Xem chi tiết
tthnew
29 tháng 12 2019 lúc 10:22

Cách khác:

Xét hiệu:\(a^4+b^4+c^4-abc\left(a+b+c\right)\)

\(=\frac{1}{4}\left[\left(a^2+c^2-2b^2\right)^2+\left(ab+bc-2ca\right)^2\right]+\frac{3}{4}\left(a-c\right)^2\left[\left(a+c\right)^2+b^2\right]\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

P/s: Bài đơn giản, làm 3 dòng:DDD (vắn tắt tuyệt đối)

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
27 tháng 12 2019 lúc 20:28

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^4+b^4+c^4)(1+1+1)\geq (a^2+b^2+c^2)^2\)

\((a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2\)

\(\Rightarrow 3(a^4+b^4+c^4)\geq (a^2+b^2+c^2).\frac{(a+b+c)^2}{3}\)

\(\Leftrightarrow a^4+b^4+c^4\geq \frac{(a^2+b^2+c^2)(a+b+c)}{9}.(a+b+c)(1)\)

Áp dụng BĐT AM-GM:

\((a^2+b^2+c^2)(a+b+c)\geq 3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc(2)\)

Từ $(1);(2)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$

hay $\frac{a^4+b^4+c^4}{abc}\geq a+b+c$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
27 tháng 12 2019 lúc 20:31

Cách khác:

Xét hiệu:

\(a^4+b^4+c^4-abc(a+b+c)=\frac{2a^4+2b^4+2c^4-2abc(a+b+c)}{2}\)

\(=\frac{(a^4-2a^2b^2+b^4)+(b^4-2b^2c^2+c^4)+(c^4-2c^2a^2+a^4)+2a^2b^2+2b^2c^2+2c^2a^2-2abc(a+b+c)}{2}\)

\(=\frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2+(a^2b^2-2ab^2c+b^2c^2)+(b^2c^2-2abc^2+c^2a^2)+(a^2b^2-2a^2bc+c^2a^2)}{2}\)

\(=\frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2+(ab-bc)^2+(bc-ac)^2+(ab-ac)^2}{2}\geq 0, \forall a,b,c>0\)

Do đó $a^4+b^4+c^4\geq abc(a+b+c)$

$\Rightarrow \frac{a^4+b^4+c^4}{abc}\geq a+b+c$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Văn Kiệt
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Pikachu
Xem chi tiết
hattori heiji
22 tháng 4 2018 lúc 9:52

> hay ≥

Bình luận (4)
Phạm Nguyễn Tất Đạt
22 tháng 4 2018 lúc 10:20

a)\(a^2+b^2+c^2\ge ab+bc+ca\)

AM-GM:\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

Cộng vế theo vế\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

b)AM-GM:\(a^4+a^4+b^4+c^4\ge4a^2bc\)

\(b^4+b^4+a^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế\(\Rightarrow4\left(a^4+b^4+c^4\right)\ge4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

Bình luận (9)
hattori heiji
22 tháng 4 2018 lúc 11:29

c)

ta có

(a+b-c)(a-b+c) = a2-(b-c)2 ≤ a2

(a-b+c)(b+c-a) = c2-(a-b)2 ≤ b2

(a+b-c)(b+c-a) = b2-(a-c)2 ≤ b2

nhân các vế với nhau ta đc

[(a+b-c)(a-b+c)(b+c-a)]2 ≤ (abc)2

<=> (a+b-c)(a-b+c)(b+c-a) ≤ abc (đpcm)

Bình luận (0)
Dương Gia Linh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 12:03

BĐT bị ngược dấu, BĐT đúng phải là:

\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)

Bình luận (0)
Lê Hoàng Hiếu
Xem chi tiết