Cho a,b,c>0 thoả mãn a+b+c=1. CMR:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\ge30\)
Cho các số nguyên a,b,c thoả mãn a=b+c
CMR a^4+b^4+c^4 gấp đôi 1 số chính phương
Cho a,b,c dương thoả mãn: abc≥1. CMR:
\(\left(a+\dfrac{1}{a+1}\right).\left(b+\dfrac{1}{b+1}\right).\left(c+\dfrac{1}{c+1}\right)\ge\dfrac{27}{8}\)
1> cho a,b,c là các số hữu tủ khác 0 thoả mãn a+b+c=0. CMR: M= 1/a^2+ 1/b^2 + 1/c^2
2> rút gọn biểu thức sau và tìm giá trị nguyên của x để biểu thức có giá trị nguyên
M = ( x^2-2x / 2x^2+8 - 2x^2 / 8-4x+2x^2-x^3 ).( 1 - 1/x - 2/x^2 )
3> cho a,b,c là các số không âm và không lớn hơn 2 thoả mãn a+b+c=0. CMR a^2 + b^2 + c^2 <_ 5
cho các số a,b,c thoả mãn
\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=1\end{matrix}\right.\)
Tính M=\(a^4+b^4+c^4\)
cho các số a,b,c thoả mãn : a+b+c=3/2.
cmr a^2 + b^2 + c^2 = 3/4
thanks các bạn nhiều nha
a) Cho a, b, c thoả mãn a+b+c = abc
CMR: a(b2-1)( c2-1) + b(a2-1)( c2-1) + c(a2-1)( b2-1) = 4abc
Cho các số a,b,c thoả mãn a+b+c=0.Cmr
a^2.(2a+b)+c^2.(2c+b)b.(b^2-4ca)=0