Tìm x,y
2x + 124 =5y
Tìm x;y;z, biết:
a. x:y:z = 3:5:(- 2) và 5x - y + 3z = 124
b. 2x=3y ; 5y=7z và 3x - 7y + 5z = 30
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
a)
x:y:z=3:5:(-2)
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3\left(-2\right)}=\frac{124}{4}=31\)
=>x=31.3=39
y=31.5=155
z=31.(-2)=-62
b)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{21.3-7.14+5.10}=\frac{30}{15}=2\)
=> x=2.21=42
y=2.14=28
z=2.10=20
Tìm hai số tự nhiên x,y biết:
\(a) 2x+124=5y\)
\(b) 35^x+9=2.5^y\)
\(c) x^{2018}+(x+y-2017)^{2020}=0\)
2x = 3y ; 5y = 7z và 5x -y + 3z = 124
bạn không chép đề đầy đủ kìa chép lại đi bọn mình mới giải được. Chứ bạn để vậy ai hiểu bạn muốn hỏi gì
a, x : y : z = 3 :5 : (-2) và 5x -y +3z =124
b, 2x = 3y ; 5y= 7z , 3x - 7y +5z =-30
c, x/2 = y/3=z/5 và x,y ,z =810
Câu c là dấu " . " là dấu nhân
a) \(x:y:z=3:5:\left(-2\right)\) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)=> \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng TC dãy tỉ số bằng nhau ta có ;
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\hept{\begin{cases}\frac{x}{3}=31\\\frac{y}{5}=31\\\frac{z}{-2}=31\end{cases}}\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)
b) Ta có : \(\hept{\begin{cases}2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\\5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\end{cases}}\)
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
=> \(\hept{\begin{cases}\frac{x}{21}=-2\\\frac{y}{14}=-2\\\frac{z}{10}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-42\\y=-28\\z=-20\end{cases}}\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz = 2k.3k.5k
=> 30k3 = 810
=> k3 = 27
=> k = 3
Vậy x = 6,y = 9,z = 15
Tìm tọa độ giao điểm của đường thẳng d: x - 12 4 = y - 9 3 = z - 1 1 và (P): 3x+5y-z-2=0
A. (1;0;1)
B. (0;0;-2)
C. (1;1;6)
D. (12;9;1)
Đáp án B.
Đặt x - 12 4 = y - 9 3 = z - 1 1 =t => x=12+4t; y= 3t+9; z= t+1 thay vào phương trình của mặt phẳng ta có
3(12+4t)+5(3t+9) -(t+1 )-2=0 <=> 26t =-78 => t=-3
Khi đó thì điểm đó là A(0;0;-2)
Tìm tọa độ giao điểm của đường thẳng d: x − 12 4 = y − 9 3 = z − 1 1 và (P): 3 x + 5 y − z − 2 = 0 .
A. (1;0;1)
B. (0;0;-2)
C. (1;1;6)
D. (12;9;1)
Đáp án B.
Đặt x − 12 4 = y − 9 3 = z − 1 1 = t
⇒ x = 12 + 4 t ; y = 3 t + 9 ; z = 1 + t
thay vào phương trình của mặt phẳng ta có
3 12 + 4 t + 5 3 t + 9 − 1 + t − 2 = 0 ⇔ 26 t = − 78 ⇔ t = − 3 .
Khi đó thì điểm đó là A 0 ; 0 ; − 2
bài 1:tìm x:
a, (28*5^x-5^x+2)*2=150
b, |x|-7=11
c, 16+|x-1|*2=22
d, 124+|26-x|*2=216
e, 18-4*|x-1|=-2
g, 90-3*(x+1)^2=42
h,2*(x-1)^2-3=5
bài 2:tìm x,y nguyên thỏa mãn:
a, x+5=y*(x-2)
b, 3*x*y -5y+2x=13
|x| - 7 = 11
<=> |x| = 18
<=> x = 18
hoặc x = -18
Vậy...
Bài tập 2. Tìm hai số x, y biết:
a)
x 5
=
y 2
và 3x−2y = −55;
b)
x 3
=
y 2
và 2x + 5y = 48;
c) −2x = 5y và x + y = 30;
d) 3x = 4y và 2x + 3y = 34.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
\(A=5x^2z-10xyz+5y^2z=5z\left(x^2-2xy+y^2\right)=5z\left(x-y\right)^2\)
Thay x = 124, y = 24, z = 2 vào A, ta có:
\(5\times2\times\left(124-24\right)^2=10\times100^2=10\times10000=100000\)
Vậy A = 10 000 khi x = 124, y = 24, z = 2.
\(B=2x^2+2y^2-x^2z-y^2z+z-2=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)=\left(2-x\right)\left(x^2+y^2-1\right)\)
Thay x = 1, y = 1, z = - 1 vào B, ta có:
\(B=\left[2-\left(-1\right)\right]\left(1^2+1^2-1\right)=3\times1=3\)
Vậy B = 3 khi x = 1, y = 1, z = - 1.
Tìm x;y biết:
a) 2x=5y; x-y=9
b)2x/3= 4y/7; x+y= 39
\(\left\{{}\begin{matrix}2x=5y\\x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5x=0\\x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\2x-2y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=18\\2x-2y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=15\end{matrix}\right.\)
b) \(\dfrac{2x}{3}=\dfrac{4y}{7}\Rightarrow\dfrac{x}{1,5}=\dfrac{y}{1,75}\)
Áp dụng tỉ số của dãy số bằng nhau, ta có: \(\dfrac{x+y}{1,5+1,75}=\dfrac{39}{3,25}=12\)
\(\dfrac{2x}{3}=12\Rightarrow x=18\)
\(\dfrac{4y}{7}=12\Rightarrow y=21\)