Cho tam giác ABC vuông tại A,lấy D thuộc AB,E thuộc AC,F thuộc BC sao cho AD=AE,CE=CF. Tính góc DEF
Bài 7. Cho tam giác ABC vuông tại B. Lấy điểm E thuộc cạnh huyền sao cho AE < AB, CE < CB. Lấy điểm D trên cạnh AB sao cho AD = AE. Lấy điểm F trên cạnh BC sao cho CF = CE. Tính số đo góc DEF
Bài 7. Cho tam giác ABC vuông tại B. Lấy điểm E thuộc cạnh huyền sao cho AE < AB, CE < CB. Lấy điểm D trên cạnh AB sao cho AD = AE. Lấy điểm F trên cạnh BC sao cho CF = CE. Tính số đo góc DEF
Bài 7. Cho tam giác ABC vuông tại B. Lấy điểm E thuộc cạnh huyền sao cho AE < AB, CE < CB. Lấy điểm D trên cạnh AB sao cho AD = AE. Lấy điểm F trên cạnh BC sao cho CF = CE. Tính số đo góc DEF
Vì AE=AD (gt)
=> tam giác AED cân tại A
Xét tam giác AED cân tại A có:
gócAED=(180độ-gócA):2
Vì CE=CF (gt)
=> tam giác CEF cân tại C
Xét tam giác CEF có:
gócCEF=(180độ-gócC):2
Ta có: gócAED + góc DEC=180độ (2 góc kề bù)
Mà gócDEF + góc CEF= góc DEC
=> góc AED + gócDEF + gócCEF=180độ
=> (180độ - gócA):2+(180độ - gócC):2+gócDEF=180độ
=>(180độ - gócA + 180độ - gócC):2+gócDEF=180độ
Mà gócA + gócC=90độ (tam giác ABC vuông tại B)
=>(360độ - 90độ):2+góc DEF=180độ
=>135độ + gócDEF =180độ
=>gócDEF=45độ
hình bạn tự vẽ nha và mình ko viết đc kí hiệu nên mong bạn thông cảm hihi
cho tam giác ABC vuông tại B trên AB,BC,AC lấy các cạnh lần lượt là D,F,E sao cho AD=AE, CF=CE. tính góc def
1.cho tam giác ABC có BC=2AB. M là trung điểm của BC, D là trung điểm của BM.TRên tia AD lấy điểm E sao cho AE=2AD. C/m: a, tam giác MAE=tam giác MAC b, AC=2AD
2.cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB) DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
3. Cho tam giác ABC cân tại A.D thuộc AB. E thuộc AC sao cho AD=AE. O là giao điểm của BE và CD. C/m
a,BE=CD b, DE song song với BC
bai tinh chat tia phan giac cua mot goc
Mọi người giúp em với.
1. Cho tam giác ABC cân tại A và có góc A bằng 50°.
a) Tính góc B và góc C.
b) Lấy D thuộc AB, E thuộc AC sao cho AD bằng AE. Chứng minh DE song song BC.
2.Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD bằng AE.
a) Chứng minh DB bằng EC.
b) Gọi O là giao điểm của BD và EC. Chứng minh tam giác OBC và tam giác ODE là tam giác CÂN.
c) Chứng minh DE song song BC.
3. Cho tam giác ABC vuông tại A có góc B bằng 60°. Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE bằng CA ( CE,CA nằm cùng phía đối BC ). Trên tia đối BC lấy F sao cho BF bằng BA. Chứng minh :
a) Tam giác ACE đều.
b) A,E,F thẳng hàng ( Góc AEF bằng 180° ).
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Cho tam giác ABC đều lấy các diểm D, E, F theo thứ tự thuộc các cacnhj AB, BC, AC sao cho AD=BE=CF
a) CMR: Cho tam giác DEF đều
b) Ở phía ngoài tam giác ABC lần lượt kẻ các tia Bx vuông góc với BA tại B , Cy vuống góc tại C. Cy lần lượt lấy điểm M và N .Sao cho BM=AB=CN. Tính số đo góc MAN
cho tam giác ABC vuông tại A có AB<AC lấy E thuộc CB sao cho CA=CE qua E kẻ đường vuông góc với BC cắt AB tại D a, chứng minh CD vuông với AE b, lấy F thuộc tia đối của AC sao cho AF=EB chứng minh 3 điểm EDF thẳng hàng
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
CA=CE
=>ΔCAD=ΔCED
=>CA=CE và DA=DE
=>CD là trung trực của AE
=>CD vuông góc AE
b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=EB
=>ΔDAF=ΔDEB
=>góc ADF=góc EDB
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng