Bài 7. Cho tam giác ABC vuông tại B. Lấy điểm E thuộc cạnh huyền sao cho AE < AB, CE < CB. Lấy điểm D trên cạnh AB sao cho AD = AE. Lấy điểm F trên cạnh BC sao cho CF = CE. Tính số đo góc DEF
cho tam giác abc vuông tại a. lấy d trên cạnh bc sao cho góc bad= góc bca. Trên tia đối của tia AD lấy điểm E sao cho AE= BC. Trên tia đối của tia CA lấy điểm F sao cho CF=AB. CHỨNG MINH BE VUÔNG GÓC BF
Cho tam giác ABC, có AB<AC. Kẻ tia phân giác AD của góc BAC ( D thuộc BC). Trên cạnh AC lấy điểm F sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng:
a) Tam giác BDF= tam giác EDC
b) BF=EC
Cho tam giác ABC có góc B bằng góc C. Tia phân giác của góc A cắt cạnh BC tại D.
a) Chứng minh AD BC và AB = AC.
b) Trên tia đối của BC lấy điểm E, trên tia đối của CB lấy điểm F sao cho BE = CF.
Chứng minh AF = AE và AD là đường trung trực của EF
nhanh em đang cần gấp
cho tam giác nhọn abc (AB < AC) có góc A = 60 độ. D là trung điểm của cạnh AC. Trên tia AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a, Tam giác ADE là tam giác đều
b, Tam giác DEC là tam giác cân
c, CE vuông góc với AB
Bài 2 (4 điểm) Cho tam giác ABC cân tại C. Trên cạnh CA lấy điểm E, trên tia đối của tia BC lấy điểm D sao cho AE= BD . Kẻ EI, DJ vuông góc với AB (I, J thuộc đường thẳng AB). 1, Chứng minh tam giác AEI bằng tam giác BDJ. 2, Gọi M là giao điểm của AB và ED, chứng minh tam giác EIM bằng tam giác DJM. 3, Khi góc ACB bằng 90 và CA bằng 6cm, tính AB (trường hợp này chỉ dùng cho câu 3). 4, Đường thẳng vuông góc với CA tại A cắt tia phân giác của góc ACB tại N, chứng minh rằng: đường thẳng NM là đường trung trực của đoạn thẳng DE
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. Chứng minh rằng
a) Tam giác BHD = tam giác CKE b) Tam giác AHB = tam giác AKC c) BC song song với HK
Cho tam giác ABC cân tại A. trên cạnh AB AC lấy 2 điểm E,F sao chi AE=AF gọi O là giao điểm của BE và CF CM: a,BF=CE b,tam giác DBC cân c,AO là đường trung tuyến của EF
Cho ∆ABC vuông tại A có AB= 4cm, AC= 3 cm. a. Tính BC b. Trên cạnh AC lấy điểm E sao cho AE= 1cm, trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh rằng ∆BEC= ∆DEC. Chứng minh rằng DE đi qua trung điểm của cạnh BC