cho a+b=c+d .chứng minh D=a^2 + b^2 + ab>=3cd
1/ Cho tỉ lệ thức : a/b=c/d. Chứng minh:( 2a^2-3ab+5b^2)/(2b^2+3ab)=(2c^2-3cd+5d^2)/(2d^2+3cd)
2/ B=35+335+3335+...+333...35
3/ a^2+b^2+c^2>(ab+bc+ca)
4/ 18/a+b+c<=2/a+2/b+2/c với a,b,c dương
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)với ( ab > 0 ).Chứng minh;
\(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\)
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Thay a và c vào VP và VT sẽ bằng nhau
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng \(\dfrac{2a^2-3ab+5b^2}{2a^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2c^2+3cd}\)
2) Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{b^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
3) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\).Chứng minh rằng\(\dfrac{3a^6+c^6}{3b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
Bài 3:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$
Khi đó:
$\frac{3a^6+c^6}{3b^6+d^6}=\frac{3(bt)^6+(dt)^6}{3b^6+d^6}=\frac{t^6(3b^6+d^6)}{3b^6+d^6}=t^6(*)$
Và:
$\frac{(a+c)^6}{(b+d)^6}=(\frac{bt+dt}{b+d})^6=t^6(**)$
Từ $(*); (**)\Rightarrow $ đpcm.
Cho a/b=c/d,Chứng minh: \(\frac{7a^2+ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
\(dat\frac{a}{b}=\frac{c}{d}=k\)->> a=b.k va c=d.k
về phai
\(\frac{7.\left(d.k\right)^2+d.k.d}{11.\left(d.k\right)^2-8.d^2}=\frac{d^2.k\left(7k+1\right)}{d^2.\left(11k^2-8\right)}=\frac{k.\left(7k+1\right)}{11k^2-8}\)
ve trai
\(\frac{7.\left(b.k\right)^2+b.k.b}{11.\left(b.k\right)^2-8b^2}=\frac{b^2k.\left(7k+1\right)}{b^2.\left(11k^2-8\right)}=\frac{k.\left(7k+1\right)}{11k^2-8}\)
vậy vế trái = vế phải --> dpcm ( để bạn ghi có sai cho 3.cd k??_)
Các bạn ơi giúp mình mấy bài toán này giùm nha:
1/ Cho a/b = c/d. Chứng minh rằng:
a) ab/cd = a^2 +b^2/c^2+d^2
b)ac/bd = a^2+c^2/b^2+d^2
c) 7a^2+3ab/11a^2-8b^2 =7c^2+3cd/11c^2-8d^2
2/ Cho 4 số a.b.c.d thỏa mãn b^2=ac;c^2=bd
Chứng minh: a^3+b^3+c^3/b^3+c^3+d^3=a/d
1) Cho a/b = b/c = c/d = d/a ( với a,b,c,d khác 0 . Tính giá trị biểu thức :
M = (a+b)/(c+d) + (b+c)/(d+a) +(c+d)/(a+b)+(d+a)/(d+c)
2) Cho a/b = c/d. Chứng minh rằng :
7a^2 + 3ab/11a^2 - 8b^2 = 7c^2 + 3cd/11c^2 - 8d^2
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
cho a/b=c/d chứng minh 7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng : (a+2015c)(b+d)=(a+c)(b+2015d)
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
đg cần gấp nka m.ng záng zúp mk
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2.\left(bk\right)^2-3.bk.b+5.b^2}{2b^2+3.bk.b}\)=\(\frac{2.b^2.k^2-3.k.b^2+5.b^2}{2.b^2+3.b^2.k}=\frac{b^2\left(2.k^2-3.k+5\right)}{b^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)
\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2.\left(dk\right)^2-3.dk.d+5.d^2}{2.d^2+3.dk.d}\)\(=\frac{2.d^2.k^2-3.d^2.k+5.d^2}{2.d^2+3.d.k.d}\)=\(\frac{d^2\left(2.k^2-3.k+5\right)}{d^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)
=> bằng nhau
Bằng nhau pạn nhé. Mjk ko tjện giảj nha pạn tự làm nha.