Ta có \(a+b=c+d\)
\(=>\left(a+b\right)^2=\left(c+d\right)^2\)
\(=>a^2+2ab+b^2=c^2+2cd+d^2\)
\(=>a^2+b^2+ab=c^2+2cd+d^2-ab\)
Thế vào biểu thức
\(a^2+b^2+ab\ge3cd\)
\(=>c^2+2cd+d^2-ab\ge3cd\)
\(=>c^2+d^2\ge3cd-2cd+ab\)
\(=>c^2+d^2\ge cd+ab\)
Ta có \(\left(a+b\right)^2=\left(c+d\right)^2\)
\(=>a^2+2ab+b^2=c^2+2cd+d^2\)
\(=>c^2+d^2=a^2+b^2+2ab-2cd\)
Thế vào biểu thức
\(c^2+d^2\ge cd+ab\)
\(=>a^2+b^2+2ab-2cd\ge cd+ab\)
\(=>a^2+b^2+ab+ab-2cd\ge cd+ab\)
\(=>a^2+b^2+ab\ge cd+ab+2cd-ab\)
\(=>a^2+b^2+ab\ge3cd\)