Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng:
a) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
b)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
c)\(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Bài 2: Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{5a+3b}{5a-3b}=\frac{5a+3b}{5a-3b}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì
a, \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5a-3d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Chứng minh rằng: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)= \(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Giúp mk vs! Mk tick luôn!
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
a, \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
c, \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
( giả thiết các tỉ số trên đều có nghĩa )
Bài 4: Chứng minh rằng:
Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì:
a) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b)\(\dfrac{7a^2+3ab}{11b^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Các bạn giúp mềnh nha, mai mềnh đi học òy, rồi mềnh tick cho
Thank các bạn
Cho a/b = c/d
CM : 7a^2 / 11a^2 - 8b^2 = 7c^2 + 8cd / 11c^2 - 8d^2
1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng \(\dfrac{2a^2-3ab+5b^2}{2a^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2c^2+3cd}\)
2) Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{b^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
3) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\).Chứng minh rằng\(\dfrac{3a^6+c^6}{3b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\)