Tìm điều kiện của A = \(\sqrt{a}-\sqrt{a-1}\)
B1: Cho biểu thức M = \(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}-3}{\sqrt{a}-1}\right)\)
a) tìm điều kiện của A để M đc xđ
b) rút gọn M
c) tìm điều kiện của A để M > 0
B2: Tìm x biết : \(\sqrt{9x+45}-2\sqrt{5+x}=7\)
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18
Cho
A= \(\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right).\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
a) Tìm điều kiện và rút gọn
b) Tìm các giá trị nguyên của a để giá trị của A là một số nguyên
a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1
A=(\(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)=\(\dfrac{2}{a-1}\)
b) Để A\(\in\)Z\(\Rightarrow\)x-1\(\in\) Ư(2)=\(\left\{-1,1,-2,2\right\}\)
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
vì x\(\ge\)0,x\(\ne\)1 nên x\(\in\)\(\left\{-1,0,2,3\right\}\)
cho A = \(\dfrac{x\sqrt{9}+2\sqrt{x}-5}{x+\sqrt{x}+2}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{1-\sqrt{x}}\) a ) tìm điều kiện xác định của A b ) Rút gọn A c ) Tìm x ϵ Z để A ϵ Z
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{3x+2\sqrt{x}-5}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{1-\sqrt{x}}\)
\(=\dfrac{3x+2\sqrt{x}-5+\sqrt{x}-1+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)
a. tìm điều kiện xác định của biểu thức A
b. rút gọn biểu thức A
Sửa đề: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)
a: ĐKXĐ: x>=0; x<>1
b: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2+\left(\sqrt{x}+1\right)^2-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\cdot\left(2\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1-3\sqrt{x}-1}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{-2\sqrt{x}}{\sqrt{x}-1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{x-2\sqrt{x}+1-2x-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-x-4\sqrt{x}+1}{x-1}\)
cho A = \(\dfrac{1}{x^2-\sqrt{x}}:\dfrac{\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}}\)
a, tìm điều kiện của x để A có nghĩa
b, rút gọn
1) So sánh 6 và \(\sqrt[3]{213}\)
2) Tìm điều kiện đối với x để căn thức sau có nghĩa: \(\sqrt{10-4x}\)
3) Cho biểu thức: P= \(\left(\frac{2a+1}{a\sqrt{a}-1}+\frac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\frac{a\sqrt{a}+1}{1+\sqrt{a}}\right)\)
a) Tìm điều kiện a để biểu thức P xác định
b) Với điều kiện ở câu a hãy rút gọn P
c) Tìm giá trị của P khi x= \(6-2\sqrt{5}\)
\(A=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)
Tìm điều kiện của x để A nguyên
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(A=\frac{5\sqrt{x}+3x}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-1)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}+\frac{7(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)
\(=\frac{5\sqrt{x}+3x-(3x+8\sqrt{x}-3)+(7\sqrt{x}-7)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4}{\sqrt{x}+3}\)
Dễ thấy $A>0$
$\sqrt{x}+3\geq 3\Rightarrow A\leq \frac{4}{3}$
Vậy $0< A\leq \frac{4}{3}$.
$A$ nguyên $\Leftrightarrow A=1\Leftrightarrow \frac{4}{\sqrt{x}+3}=1$
$\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1$ (trái đkxđ)
Vậy không tồn tại $x$ để $A$ nguyên.
\(P=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)
a) Tìm điều kiện xác định
b) Rút gọn
c) Tìm GTNN của P
a) ĐKXĐ: \(a>0;a\ne1\)
b) ta có:
\(P=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a}+1}{a}\)
\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)
\(=\sqrt{a}\left(\sqrt{a}-1\right)\)
c) ta có:
\(P=\sqrt{a}\left(\sqrt{a}-1\right)=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi : \(a=\frac{1}{4}\)
Vậy min P =-1/4 khi a=1/4
55 năm rồi ms thấy m đăng câu hỏi!!
À quên tau xin tự giới thiệu tau là Nguyễn tũn đẹp trai thông minh tài giỏi siêng năng cần cù các kiểu đây!!
Hay hay tau bị mất nick ròi!!
Ngẫm nghĩ xem quên mật khẩu hay bị hack đây!!
Cho A=\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)
a) Tìm điều kiện của a để biểu thức A có nghĩa
b) Rút gọn A
c) Tìm GTNN của A
a) ĐKXĐ: \(a\ne1;a\ne0\))
\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)
\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a+1}}{a}\)
\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)
\(=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a+1}}=\frac{\sqrt{a}\left(a-1\right)}{\sqrt{a+1}}\)