Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân⨳Ly

\(A=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)

Tìm điều kiện của x để A nguyên

Akai Haruma
14 tháng 8 2021 lúc 11:35

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(A=\frac{5\sqrt{x}+3x}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-1)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}+\frac{7(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)

\(=\frac{5\sqrt{x}+3x-(3x+8\sqrt{x}-3)+(7\sqrt{x}-7)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4}{\sqrt{x}+3}\)

Dễ thấy $A>0$

$\sqrt{x}+3\geq 3\Rightarrow A\leq \frac{4}{3}$

Vậy $0< A\leq \frac{4}{3}$. 

$A$ nguyên $\Leftrightarrow A=1\Leftrightarrow \frac{4}{\sqrt{x}+3}=1$

$\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1$ (trái đkxđ)

Vậy không tồn tại $x$ để $A$ nguyên.