Tìm x: \(2,8-1,5\sqrt{x}=\sqrt{\frac{98}{8}}\)
Tìm x biết: \(2,8-1,5\sqrt{x}=\sqrt{\frac{98}{8}}\)
quên, bấm nút tl, làm tip
\(\sqrt{x}\)= (2,8 - 3,5)/1,5 = -0,7/1,5
vô nghĩa vì căn bậc 2 k âm, pt vn
Tìm x:
a) 15 - 4x2 = - 21
b) 5x2 + 7,1 = \(\sqrt{49}\)
c) 4,7 + 3\(\sqrt{x}\) = 5,9
d) 2,8 - 1,5\(\sqrt{x}\) = \(\sqrt{\frac{98}{8}}\)
a, 4x2=15-(-21)
=36
x2=36:4
x2=4
x2=22
x=2
b. 5x2+7,1=\(\sqrt{49}\)
\(\Rightarrow\)5x2+7,1=7
\(\Rightarrow\)5x2 = 7+7,1
\(\Rightarrow\)5x2 =14,1
\(\Rightarrow\)x2 =\(\dfrac{14,1}{5}\)
\(\Rightarrow\)x =\(\sqrt{\dfrac{14,1}{5}}\)
cho mk 1 tick đúng và câu tiếp thao sẽ hiện ra
a) 129 - 50x^2 = -159
b)5x^2 + 7,1 =\(\sqrt{49}\)
c) 4,7 + 3\(\sqrt{x}\)= 5,9
d) 2,8 - 1,5\(\sqrt{x}\)=\(\sqrt{\frac{98}{8}}\)
Tìm số x trong các tỉ lệ thức sau:
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}};\\b) - 0,52:x = \sqrt {1,96} :( - 1,5);\\c)x:\sqrt 5 = \sqrt 5 :x\end{array}\)
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} = - 28\end{array}\)
Vậy x = 28
\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,4:( - 1,5)\\ x = \dfrac{(-0,52).(-1,5)}{1,4}\\x = \frac{39}{{70}}\end{array}\)
Vậy x = \(\frac{39}{{70}}\)
\(\begin{array}{l}c)x:\sqrt 5 = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x = - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)
Vậy x \( \in \{ \sqrt 5 ; - \sqrt 5 \} \)
Chú ý:
Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a \) hoặc x = -\(\sqrt a \)
a: \(\dfrac{x}{-3}=\dfrac{7}{0.75}=\dfrac{28}{3}\)
=>\(x=\dfrac{28\left(-3\right)}{3}=-28\)
b: \(-\dfrac{0.52}{x}=\dfrac{\sqrt{1.96}}{-1.5}=\dfrac{1.4}{-1.5}\)
=>\(x=0.52\cdot\dfrac{1.5}{1.4}=\dfrac{39}{70}\)
c: \(\dfrac{x}{\sqrt{5}}=\dfrac{\sqrt{5}}{x}\)
=>\(x^2=5\)
=>\(x=\pm\sqrt{5}\)
\(\sqrt{49x-98}-14\sqrt{\frac{x-2}{49}=}3\sqrt{x-2}+8\)
Rút gọn
ĐKXĐ: \(x\ge2\)
Từ pt đã cho suy ra:
\(7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
⇒ \(2\sqrt{x-2}=8\) ⇒ \(x=18\)
P = \(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{8\sqrt{x}+8}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\frac{x+\sqrt{x}+3}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}}\right)\)
a)tìm x để P có nghĩa và chứng minh rằng \(P\le1\)
b) tìm x thõa mãn: \(\left(\sqrt{x}+1\right)P=1\)
Giải phương trình:
a, \(\sqrt{49x-98}-14\sqrt{\frac{x-2}{49}}=3\sqrt{x-2}+8\)
b, \(\sqrt{x+1}-\sqrt{x-2}=1\)
c, \(\sqrt{x^2+1}+\sqrt{4x^2-4x+5}=0\)
tính GTBT của \(B=1:\left(\left(\frac{\sqrt{x}+3}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right).\frac{x\sqrt{x}-\sqrt{x}+x^2+1}{\sqrt{x}}\right)\) tại \(x=98+20\sqrt{6}\)
Bài này chắc tác giả đánh sai tử thức của phân thức cuối cùng, biểu thức B phải là \(B=\frac{1}{C}\) trong đó \(C=\left(\frac{\sqrt{x}+3}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right)\cdot\frac{x\sqrt{x}-\sqrt{x}+x^2-1}{\sqrt{x}}\)
Ta có \(C=\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\frac{\left(\sqrt{x}-3\right)}{x\sqrt{x}-1}\right)\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x+\sqrt{x}}{x\sqrt{x}-1}\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\left(\sqrt{x}+1\right)^2\)
Thành thử ta được \(C=\left(\sqrt{x}+1\right)^2\)
Ta có \(x=98+20\sqrt{6}=\left(5\sqrt{2}+4\sqrt{3}\right)^2\to\sqrt{x}=5\sqrt{2}+4\sqrt{3}\to\)
hay \(C=\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1=99+20\sqrt{6}+2\left(5\sqrt{2}+4\sqrt{3}\right)\)
\(=99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}\to B=\frac{1}{C}=\frac{1}{99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}}\)
C1: Cho M=( 1- \(\frac{4\sqrt{x}}{x-1}\) + \(\frac{1}{\sqrt{x-1}}\) ) : \(\frac{x-2\sqrt{x}}{x-1}\)
a, rút gọn M
b, tìm x để M = \(\frac{1}{2}\)
C2: giải phương trình
a, \(\sqrt{49x-98}-14\sqrt{\frac{x-2}{49}}=3\sqrt{x-2}+8\)
b, \(\sqrt{x+1}-\sqrt{x-2}=1\)
c, \(\sqrt{x^2+1}+\sqrt{4x^2-4x+5}=0\)
\(\text{Câu 1: Sửa đề}\)
\( a)M = \left( {1 - \dfrac{{4\sqrt x }}{{x - 1}} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{x - 2\sqrt x }}{{x - 1}}\\ M = \left[ {1 - \dfrac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \dfrac{1}{{\sqrt x - 1}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 4\sqrt x + \sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right) - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \sqrt x \left( {\sqrt x - 3} \right).\dfrac{1}{{x - 2\sqrt x }}\\ M = \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} \)
\( b)M = \dfrac{1}{2} \Rightarrow \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( {x - 3\sqrt x } \right) = x - 2\sqrt x \\ \Leftrightarrow 2x - 6\sqrt x = x - 2\sqrt x \\ \Leftrightarrow - 4\sqrt x = - x\\ \Leftrightarrow 16x = {x^2}\\ \Leftrightarrow 16x - {x^2} = 0\\ \Leftrightarrow x\left( {16 - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 16 - x = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 16 \end{array} \right. \)
\(\text{Câu 2}:\)
\( a)\sqrt {49x - 98} - 14\sqrt {\dfrac{{x - 2}}{{49}}} = 3\sqrt {x - 2} + 8\left( {x \ge 2} \right)\\ \Leftrightarrow 7\sqrt {x - 2} - 3\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\dfrac{{\sqrt {x - 2} }}{7}\\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 2\sqrt {x - 2} \\ \Leftrightarrow 4\sqrt {x - 2} - 2\sqrt {x - 2} = 8\\ \Leftrightarrow 2\sqrt {x - 2} = 8\\ \Leftrightarrow \sqrt {x - 2} = 4\\ \Leftrightarrow x - 2 = 16\\ \Leftrightarrow x = 16 + 2 = 18 \text{(thỏa mãn điều kiện)} \)
\(\text{Câu 2}:\)
\( b)\sqrt {x + 1} - \sqrt {x - 2} = 1\left( {x \ge 2} \right)\\ \Leftrightarrow \sqrt {x + 1} = 1 + \sqrt {x - 2} \\ \Leftrightarrow x + 1 = 1 + 2\sqrt {x - 2} + x - 2\\ \Leftrightarrow - 2\sqrt {x - 2} = - 2\\ \Leftrightarrow \sqrt {x - 2} = 1\\ \Leftrightarrow x - 2 = 1\\ \Leftrightarrow x = 1 + 2 = 3\text{(thỏa mãn điều kiện)} \)
\(c)\sqrt {{x^2} + 1} + \sqrt {4{x^2} - 4x + 5}\)
\(\text{Ta có}: \sqrt {{x^2} + 1} \ge 1 \text{với mọi x}\)
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-1\right)^2+4}\ge2\) \(\text{với mọi x}\)
\(\text{Vậy với mọi x thì vế trái của phương trình} \sqrt {{x^2} + 1} + \sqrt {4{x^2} - 4x + 5} \ge 3 \text{khi đó vế phải của phương trình bằng 0. Vậy phương trình vô nghiệm} \)