Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuan Anh Nguyen
Xem chi tiết
Lê Thanh Nhàn
Xem chi tiết
Lê Thanh Nhàn
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Ngọc Vĩ
Xem chi tiết
Hà Ngọc Khánh
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Đặng Minh Triều
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Ngọc Vĩ
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Hzsbbshsjjshs
Xem chi tiết
Trần Kim Anh
Xem chi tiết
T.Ps
5 tháng 6 2019 lúc 22:03

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

Luận Dương
6 tháng 6 2019 lúc 7:57

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

nguyễn thu trà
Xem chi tiết
Nguyễn Bảo Hân
Xem chi tiết
Baekhyun
Xem chi tiết
Phương Trâm
1 tháng 9 2017 lúc 20:24

Ta có:

\(VT=\dfrac{x^2}{x^3-xyz-2013x}+\dfrac{y^2}{y^3-xyz-2013y}+\dfrac{z^2}{z^3-xyz-2013z}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013.\left(z+y+z\right)}\)

\(VT=\dfrac{\left(x+y+x\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right).\left(xy+yz+xz\right)-xyz\right]}\)

\(VT=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}\)

\(VT=\dfrac{1}{x+y+z}=VP\)

\(\Rightarrow\) Đpcm.

Minh Triều
Xem chi tiết
Vũ Hoàng Long
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Minh Triều
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Thắng Nguyễn
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx