Ta có:
\(VT=\dfrac{x^2}{x^3-xyz-2013x}+\dfrac{y^2}{y^3-xyz-2013y}+\dfrac{z^2}{z^3-xyz-2013z}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013.\left(z+y+z\right)}\)
\(VT=\dfrac{\left(x+y+x\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right).\left(xy+yz+xz\right)-xyz\right]}\)
\(VT=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}\)
\(VT=\dfrac{1}{x+y+z}=VP\)
\(\Rightarrow\) Đpcm.