MAx
ó thể thấy rằng:
xy + yz + 2zx = y(x + z) + 2zx <= lyllx + zl + 2zx (1).
Lại có lx + zl <= căn[2(x^2 + z^2)] = căn[2(1 - y^2)] và 2zx <= z^2 + x^2 = 1 - y^2; từ đây suy ra
xy + yz + 2zx <= lylcăn[2(1 - y^2)] + 1 - y^2 (2).
Tiếp đến, ta sẽ chứng minh lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 + 1/2 (3), từ đó suy ra kết quả của bài toán. Thật vậy, ta có
lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 - 1/2 <=> lylcăn[2(1 - y^2)] <= y^2 + căn(3)/2 - 1/2
<=> 2y^2(1 - y^2) <= y^4 + (căn(3) - 1)y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - (3 - căn(3))y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - 2căn(3)(căn(3)/2 - 1/2)y^2 + (căn(3)/2 - 1/2)^2
<=> (căn(3)y^2 - căn(3)/2 + 1/2)^2 >= 0.
Đẳng thức xảy ra khi y = căn[1/2 - 1/2căn(3)] hoặc y = -căn[1/2 - 1/2căn(3)].
Từ (1),(2),(3) suy ra
xy + yz + 2zx <= căn(3)/2 + 1/2.
Dấu = xảy ra khi dấu = của (1),(2),(3) cùng xảy ra, tức là x = z = (1/2)căn[(1 + căn(3))/căn(3)] và y = căn[1/2 - 1/2căn(3)], hoặc x = z = (-1/2)căn[(1 + căn(3))/căn(3)] và y = -căn[1/2 - 1/2căn(3)].