Tham khảo tại đây:
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
Tham khảo tại đây:
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
Cho x,y,z>0
CMR: nếu \(\dfrac{\sqrt{xy}+1}{\sqrt{y}}=\dfrac{\sqrt{yz}+1}{\sqrt{z}}=\dfrac{\sqrt{xz}+1}{\sqrt{x}}\) thì x=y=z hoặc xyz=1
Cho x, y, z là các số dương và xyz = 4 Tính giá trị biểu thức :
\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+2}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)
cho x,y,z là các số thực và xyz= 100 tính giá trị biểu thức
M=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+10}+\dfrac{\sqrt{xz}}{\sqrt{xz}+10\sqrt{z}+10}\)
Tính:
a) A= \(\sqrt{2}-\sqrt{12-8\sqrt{2}}\)
b) B= \(\sqrt{4\sqrt{10}}-\sqrt{2}-\sqrt{10}\)
c) C= \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\)
d) D=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{10\sqrt{z}}{\sqrt{xz}+10\sqrt{z}+10}\) với x,y,z>0 và xyz=100
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
Cho x,y,z > 0 tm : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\) . Tính giá trị nhỏ nhất của bt
\(P=\dfrac{\sqrt{2x^2+y^2}}{xy}+\dfrac{\sqrt{2y^2+z^2}}{yz}+\dfrac{\sqrt{2z^2+x^2}}{xz}\)
2 , gpt
\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
3, tìm stn n để \(A=n^{2012}+n^{2002}+1\) là số nguyên tố
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Với x, y, z > 0 thỏa mãn : xy + yz + xz = 5
Tìm GTNN : \(\dfrac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)