Phân tích đa thức thành nhân tử:
( x + y)3 - x3 - y3
phân tích đa thức thành nhân tử
( x + y - z)3 - x3 - y3 + z3
\(\left(x+y-z\right)^3-x^3-y^3+z^3\)
\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)
\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)
\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)
\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)
\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)
\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)
\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
#\(Urushi\text{☕}\)
Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:
(x+y+z)3-x3-y3-z3
=[(x+y)+z]3-x3-y3-z3
=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3
=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3
=3(x+y)(xy+xz+yz+z2)
=3(x+y)[x(y+z)+z(y+z)]
=3(x+y)(y+z)(x+z)
=(x+y-z-x)[(x+y-z)^2+x(x+y-z)+x^2]-(y-z)(y^2+yz+z^2)
=(y-z)(x^2+y^2+z^2+2xy-2xz-2yz+x^2+xy-xz+x^2-y^2-yz-z^2)
=(y-z)(3x^2+3xy-3xz-3yz)
=3(y-z)(x^2+xy-xz-yz)
=3(y-z)[x(x+y)-z(x+y)]
=3(y-z)(x+y)(x-z)
x3– x + 3x2y + 3xy2 + y3– y=? (Phân tích đa thức thành nhân tử)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(x^3-x+3x^2+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
= (x3 + 3x2y + 3xy2 + y3) - (x+y)
= (x + y)3 - (x + y)
= (x + y).[(x+y)2 - 1 ]
= (x + y).(x + y - 1).(x + y + 1)
Phân tích các đa thức sau thành nhân tử:
a) x3+y3+x+y
b) x3−y3+x−y
c) (x−y)3+(x+y)3
d) x3−3x2y+3xy2−y3+y2−x2
`a, x^3 + y^3 + x + y`
`= (x+y)(x^2-xy+y^2)+x+y`
`= (x+y)(x^2-xy+y^2+1)`
`b, x^3 - y^3 + x -y`
`= (x-y)(x^2+xy+y^2)+x-y`
`= (x-y)(x^2+xy+y^2+1)`
`c, (x-y)^3 + (x+y)^3`
`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`
`= (2x)(x^2 + 3y^2)`
`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`
`= (x-y)^3 + (y-x)(x+y)`
`=(x-y)(x^2+2xy+y^2-x-y)`
a: =(x+y)(x^2-xy+y^2)+(x+y)
=(x+y)(x^2-xy+y^2+1)
b: =(x-y)(x^2+xy+y^2)+(x-y)
=(x-y)(x^2+xy+y^2+1)
c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3
=2x^3+6xy^2
d: =(x-y)^3+(y-x)(y+x)
=(x-y)[(x-y)^2-(x+y)]
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
Ta có: ( x - y) z3 + ( y - z ) x3 + ( z - x ) y3
= ( x - y ) z3 + ( y - z )x3 + ( z - y)y3 + ( y - x ) y3
= ( x - y ) ( z3 - y3 ) + ( y - z ) ( x3 - y3)
= ( x - y ) ( z - y ) ( z2 + zy + y2 ) + ( y - z ) ( x - y) ( x2 + xy + y2 )
= ( x - y ) ( y - z ) ( x2 + xy + y2 - z2 - zy - y2)
= ( x - y ) ( y - z ) [ ( x2 - z2) + ( xy - zy) ]
= ( x - y ) ( y - z ) [ ( x - z ) ( x + z ) + y ( x - z ) ]
= ( x - y ) ( y - z ) ( x - z ) ( x + y + z )
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
(x - y).z3 + (y - z).x3 + (z - x).y3
= z3(x - y) + x3y - x3z + y3z - xy3
= z3(x - y) + xy(x2 - y2) - z(x3 - y3)
= z3(x - y) + xy(x - y)(x + y) - z(x - y)(x2 + xy + y2)
= (x - y)(z3 + x2y + xy2 - x2z - xyz - y2z)
= (x - y)[z(z2 - x2) + xy(x - z) + y2(x - z)]
= (x - y)[z(z - x)(z + x) - xy(z- x) - y2(z - x)]
= (x - y)(z - x)(z2 + xz - xy - y2)
= (x - y)(z - x)[(y - z)(y + z) - x(y - z)]
= (x - y)(z - x)(y - z)(y + z - x)
phân tích đa thức thành nhân tử
a) (x+y)3-x3-y3
`(x+y)^3-x^3-y^3`
`=(x+y)^3-(x^3+y^3)`
`=(x+y)^3-(x+y)(x^2-xy+y^2)`
`=(x+y)[(x+y)^2-x^2+xy-y^2]`
`=(x+y)(x^2+2xy+y^2-x^2+xy-y^2)`
`=(x+y).3xy`
a) Ta có: \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3-x^3+y^3-y^3+3x^2y+3xy^2\)
\(=3xy\left(x+y\right)\)
(x+y)3−x3−y3(x+y)3-x3-y3
=(x+y)3−(x3+y3)=(x+y)3-(x3+y3)
=(x+y)3−(x+y)(x2−xy+y2)=(x+y)3-(x+y)(x2-xy+y2)
=(x+y)[(x+y)2−x2+xy−y2]=(x+y)[(x+y)2-x2+xy-y2]
=(x+y)(x2+2xy+y2−x2+xy−y2)=(x+y)(x2+2xy+y2-x2+xy-y2)
=(x+y).3xy
Phân tích đa thức thành nhân tử:
a) ( 3 x + l ) 2 - ( 3 x - l ) 2 ; b) ( x + y ) 2 - ( x - y ) 2 ;
c) ( x + y ) 3 - ( x - y ) 3 ; d) x 3 + y 3 + z 3 - 3xyz.
a) 12x. b) 4xy
c) 2y(3 x 2 + y 2 ).
d) (x + y + z)( x 2 + y 2 + z 2 – xy – xz - yz).
phân tích đa thức thành nhân tử
a) (x+y)3+(x-y)3
b) x3-y3+2x2-2y2
c) x3+1-x2-x
phân tích đa thức thành nhân tử
c) ( x + y + z)3 - x3 - y3 - z3
( x + y + z)3 - x3 - y3 - z3=x3+y3+z3+3(a+b)(a+c)(b+c)- x3 - y3 - z3
= 3(a+b)(b+c)(a+c)
Phân tích đa thức thành nhân tử: x 3 + x 2 + y 3 + x y
A. ( x + y ) . ( x 2 - x y + y 2 + x )
B. ( x - y ) . ( x 2 + x y + y 2 - x )
C. ( x + y ) . ( x 2 + x y + y 2 - x )
D. ( x - y ) . ( x 2 + x y - y 2 + x )