Tìm GTLN của
A=3-x^2+2x-|y−3|
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
Tìm GTLN hoặc GTNN của
A = 3x(3 - x2)
B = 2x(x - 4) - 10
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
TÌM GTLN,GTNN CỦA
A=\(2x^2-4xy+y^2+6x-10\)
Biểu thức này không có min và cũng không có max
Tìm gtln của
A= -2x² + 6x - 12
\(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{15}{2}\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\)
\(maxA=-\dfrac{15}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Ta có: \(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+6\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Tìm GTLN của
A = y - \(2y^2\) + 4040
\(A=y-2y^2+4040=-2\left(y^2-\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{32321}{8}\)
\(=-2\left(y-\dfrac{1}{4}\right)^2+\dfrac{32321}{8}\le\dfrac{32321}{8}\)
\(maxA=\dfrac{32321}{8}\Leftrightarrow y=\dfrac{1}{4}\)
Cho các số thực x, y, z thỏa mãn: x + y + z = 6. Tìm GTLN của
A= xy +2yz +3xz
\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)
\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)
\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)
\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)
cho x, y, z ≥ 0 thỏa mãn x + y + z =6. Tìm GTNN và GTLN của
A = x2 + y2 + z2
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
tìm GTNN củaA=2|x+1|+|2x-3|
\(2\left|x+1\right|+\left|2x-3\right|\)
\(=\left|2x+2\right|+\left|2x-3\right|\)
\(=\left|2x+2-2x+3\right|\ge5\)
\(A_{min}=5\)
tìm gtln.gtnn của
a)A=|x+2|+3
b)B=5+|2x-7|
c)C=-|4x+5|+1
d)D= 3-|x+3|
a, \(A=\left|x+2\right|+3\ge3\)
dấu "=" xảy ra\(\Leftrightarrow x=-2\)
Vậy \(A_{min}=3\Leftrightarrow x=-2\)
b,\(B=5+\left|2x-7\right|\ge5\)
dấu "=" xảy ra\(\Leftrightarrow x=\dfrac{7}{2}\)
Vậy \(B_{min}=5\Leftrightarrow x=\dfrac{7}{2}\)
c, \(-\left|4x+5\right|+1\le1\)
dấu "=" xảy ra\(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy \(C_{max}=1\Leftrightarrow x=-\dfrac{5}{4}\)
d, \(D=3-\left|x+3\right|\le3\)
dấu "=" xảy ra\(\Leftrightarrow x=-3\)
Vậy \(D_{max}=3\Leftrightarrow x=-3\)
Tìm GTLN, GTNN:
a, \(y=4-3\cos2x\).
b, \(y=sin^2x+3\).
c, \(y=2\sin x\cos x+3\).
a: -1<=cos2x<=1
=>3>=-3cos2x>=-3
=>7>=-3cos2x+4>=1
=>7>=y>=1
\(y_{min}=1\) khi \(cos2x=1\)
=>2x=k2pi
=>x=kpi
\(y_{max}=-1\) khi cos2x=-1
=>2x=pi+k2pi
=>x=pi/2+kpi
b: \(0< =sin^2x< =1\)
=>\(3< =sin^2x+3< =4\)
=>3<=y<=4
y min=3 khi sin^2x=0
=>sinx=0
=>x=kpi
y max=4 khi sin^2x=1
=>cos^2x=0
=>x=pi/2+kpi
c: \(y=sin2x+3\)
-1<=sin2x<=1
=>-1+3<=sin2x+3<=1+3
=>2<=y<=4
\(y_{min}=2\) khi sin 2x=-1
=>2x=-pi/2+k2pi
=>x=-pi/4+kpi
y max=4 khi sin2x=1
=>2x=pi/2+k2pi
=>x=pi/4+kpi