\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)
\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)
\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)
\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)
\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)
\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)
\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)
\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)
Cho các số thực x,y,z thỏa mãn: x+y+z=6.Tìm giá trị lớn nhất của A=xy+2yz+3zx
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=1. Tìm GTLN của biểu thức A = -z^2+z(y+1)+xy
cho x, y, z \(\in\)R thỏa mãn x+y+z=6. tìm GTLN của biểu thức A=xy+2yz+3zx
MÌNH CẦN GẤP Ạ!!!
cho x,y,z thỏa mãn x+y+z=6. tìm giá trị lớn nhất của A=xy+2yz+3zx
Cho các số dương x, y, z thõa mãn \(\hept{\begin{cases}x^2+xy+\frac{y^3}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\)
tính giá trị của biểu thức \(N=xy+2yz+3xz\)
cho ba số x,y,z thỏa mãn x+y+z=2 cmr: xy+2yz+2zx >=3
cho x,y,z là các số thực thỏa mãn x2+y2+z2=1. tìm GTLN của bt M=2(xy+yz+xz)+(xy-xz)2+(yz-xy)2+(xz-yz)2
cho x,y,z thỏa mãn điều kiện x^2 + y^2 + z^2 = 1.Tìm GTNN của xy + 2yz + xz
Cho các số thực x ,y, z thỏa mãn : x\(\ge-1,y\ge-1,z\ge-4\)
Tìm GTLN : P = \(\frac{x^2}{x^2+y^2+4\left(xy+1\right)}+\frac{y^2-1}{z\left(3+z\right)+x+y+2}\)