a) 4cos5xsinx-4sin5xcosx=sin24x
b) 4cos2(2-6x) +16cos2(1-3x)=13
Giải phương trình: 4cos2(6x – 2) + 16cos2(1 – 3x) = 13
A. x = ± π 6 + k2π, k ∈ Z
B. x = ± π 6 + k 2 π 3 , k ∈ Z
C. x = ± π 18 + k 2 π 3 , k ∈ Z
D. Đáp án khác
4cos5xsinx-4sin5xcosx=sin24x
Giải các phương trình sau:
a) 3 x − 1 2 − 2 − 6 x 5 = 1 2 + 3 x − 1 ;
b) x 2 + 2 x + 1 − x + 1 3 = 6 x + 1 2 − 5 x − 5 6 .
tim gtnn A=x2-6x+13 B=3x2-6x+3 C=x2-2x+1+1 D=x2+6x+9
bạn tự kết luận nhé
\(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)
\(B=3x^2-6x+3=3\left(x-1\right)^2\ge0\)
\(C=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)
\(D=x^2+6x+9=\left(x+3\right)^2\ge0\)
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
1. Cho hàm số \(y=\dfrac{3x^2+13x+19}{x+3}\). Đường thẳng đi qua 2 điểm cực trị của đths có phương trình là:
\(A.5x-2y+13=0\)
\(B.y=3x+13\)
\(C.y=6x+13\)
\(D.2x+4y-1=0\)
2. Cho hàm số \(y=\sqrt{x^2-2x}\). Khẳng định nào sau đây là đúng?
A. Hàm số có 2 điểm cực trị
B. Hàm số đạt cực tiểu tại x=0
C. Hàm số đại cực đại tại x=2
D. Hàm số có đúng 4 điểm cực trị
3. Cho hàm số \(y=x^7-x^5\). Khẳng định nào sau đây đúng?
A. Hàm số có đúng 1 điểm cực trị
B. Hàm số có đúng 3 điểm cực trị
C. Hàm số có đúng 2 điểm cực trị
D. Hàm số có đúng 4 điểm cực trị
4. Cho hàm số \(y=f\left(x\right)\)có đạo hàm \(f'\left(x\right)=\left(x+1\right)\left(x-2\right)^2\left(x-3\right)^3\left(x+5\right)^4\)
. Hàm số \(y=f\left(x\right)\) có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
5. Cho hàm số \(y=\left(x^2-2x\right)^{\dfrac{1}{3}}\) . Khẳng định nào sau đây đúng?
A. Hàm số đạt cực tiểu tại x=1
B. Hàm số đạt cực đại tại x=1
C. Hàm số không có điểm cực trị
D. Hàm số có đúng 2 điểm cực trị
a)√36(5-2x) - 2√5x-8 =8
b) √6x^2 +2 - √ 3x^2+1 = √26-√13
b: \(\Leftrightarrow\sqrt{3x^2+1}\left(\sqrt{2}-1\right)=\sqrt{13}\left(\sqrt{2}-1\right)\)
=>3x^2+1=13
=>3x^2=12
=>x=2 hoặc x=-2
Giá trị x thỏa mãn (2x-5)(3x+2)-6x^2+5x-1=13 là
\(\Leftrightarrow3x\left(2x-5\right)+2x-5-6x^2+5x-1-13=0\\ \Leftrightarrow6x^2-15x+2x-5-6x^2+5x-1-13=0\\ \Leftrightarrow-8x-19=0\\ \Leftrightarrow-8x=19\\ \Leftrightarrow x=-\dfrac{19}{8}\)
⇔3x(2x−5)+2x−5−6x2+5x−1−13=0⇔6x2−15x+2x−5−6x2+5x−1−13=0⇔−8x−19=0⇔−8x=19⇔x=−198
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải các phương trình sau:
a) 3 x − 1 + 4 x − 2 = 5 x − 3 + 6 x − 4 ;
b) 2 x − 1 2 + 2 x + 1 3 = 2 x + 7 6 + 2 x + 9 7 . Gợi ý: Thêm bớt 2.