Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thị Thanh Ngọc
11 tháng 10 2019 lúc 21:16

a.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

VT:\(\overrightarrow{AB}+\overrightarrow{CD}\)

=\(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{CA}+\overrightarrow{AD}\)

=\(\overrightarrow{AB}+\overrightarrow{CB}=0\left(đpcm\right)\)

b.\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)

\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}+\overrightarrow{DE}+\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(LĐ\right)\)

Phan Tấn Toàn
19 tháng 12 2023 lúc 15:12

Fuck

Ngọc Thủy
Xem chi tiết
Ngân Vũ Thị
16 tháng 7 2019 lúc 13:19

Hỏi đáp ToánBài này có nhiều cách giải mk giải hộ bạn câch này thôi nha . Bạn có thể lên web dica.vn để hỏi đáp . Trên đó các bạn í giải nhanh lắm.

Hồng Quang
16 tháng 7 2019 lúc 15:32

Làm cách ngược lại này:

C/m: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{CF}+\overrightarrow{EB}\)

Ta có: \(\overrightarrow{AD}+\overrightarrow{CF}+\overrightarrow{EB}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CD}+\overrightarrow{DF}+\overrightarrow{EF}+\overrightarrow{FB}\) \(=\left(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}\right)+\overrightarrow{BD}+\overrightarrow{DF}+\overrightarrow{FB}\)Mà: \(\overrightarrow{BD}+\overrightarrow{DF}+\overrightarrow{FB}=\overrightarrow{0}\)

\(\Rightarrow\) đpcm

Xem chi tiết
Master CV
Xem chi tiết
Cao Viết Cường
Xem chi tiết
Uyên Nhi
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 8 2021 lúc 0:06

\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{BC}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}\)

\(=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\) (đpcm)

Nguyễn Phi Hòa
Xem chi tiết
ngọc
8 tháng 7 2018 lúc 20:42

a, =CD+FA+AB+DE+BC+EF=(CD+DE)+(AB+BC)+FA+EF

=CE+AC+FA+EF= (CE+EF)+AC+FA=CF+AC+FA=(CF+FA)+AC=CA+AC=0

ngọc
8 tháng 7 2018 lúc 20:47

b,VP=CD+AE+BF

VT=AD+FC+BE=AC+CD+CB+BF+BA+AE=(AC+CB)+CD+BF+BA+AE

=AB+CD+BF+BA+AE=(AB+BA)+CD+BF+AE=CD+BF+AE=VP(dccm)

Lê Huy Hoàng
Xem chi tiết
Hiệu diệu phương
Xem chi tiết
Trần Quốc Lộc
13 tháng 8 2019 lúc 9:48

\(a\text{) }\overrightarrow{AB}-\overrightarrow{CD}=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)-\overrightarrow{CD}\\ =\overrightarrow{AC}-\left(\overrightarrow{CD}-\overrightarrow{CB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(b\text{) }\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}=\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)\\ =\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{AD}+\overrightarrow{DA}=0\)

\(c\text{) }\overrightarrow{AC}+\overrightarrow{DE}-\overrightarrow{DC}-\overrightarrow{CE}+\overrightarrow{CB}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DE}-\overrightarrow{DC}\right)-\overrightarrow{CE}\\ =\overrightarrow{AB}+\overrightarrow{CE}-\overrightarrow{CE}=\overrightarrow{AB}\)

\(d\text{) }\overrightarrow{AB}+\overrightarrow{DE}+\overrightarrow{CF}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)+\left(\overrightarrow{CE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}+\left(\overrightarrow{FE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}\)