Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2019 lúc 7:13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2019 lúc 2:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 3:14

Giải bài tập Toán 11 | Giải Toán lớp 11 Giải bài tập Toán 11 | Giải Toán lớp 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2017 lúc 7:39

Đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2019 lúc 18:02

Hà Thốii
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2018 lúc 3:37

Đáp án đúng : A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2019 lúc 11:13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2018 lúc 18:28

Đáp án A

Gọi M x 0 ; y 0 ∈ C ⇒ y ' x 0 = 3 x 0 2 - 3 và y x 0 = x 0 3 - 3 x 0 .  

Suy ra phương trình tiếp tuyến của (C) tại M là y = y x 0 = y ' x 0 . x - x 0 .  

⇔ y = 3 x 0 2 - 3 . x - x 0 + x 0 3 - 3 x 0 = 3 x 0 2 - 3 . x - 2 x 0 3   ( d ) .  

Phương trình hoành độ giao điểm của (C) và (d) là x 3 - 3 x = 3 x 0 2 - 3 x - 2 x 0 3  

⇔ x 3 - 3 x 0 2 . x + 2 x 0 3 = 0 ⇔ x - x 0 2 x + 2 x 0 = 0 ⇔ [ x = x 0 x = - 2 x 0 .  

Vậy x M = x 0 x N = - 2 x 0 ⇒ 2 x M + x N = 0 .

BÍCH THẢO
Xem chi tiết
Nguyễn Bảo Long
5 tháng 9 2023 lúc 19:55

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it