Câu 1 : Tìm GTNN của hàm số \(y=cos2x+2sin^3x\) trên \(\left[0;\Pi\right]\)
A. 1 B. \(\frac{2}{3}\) C. 0 D. \(\frac{19}{27}\)
Câu 2 : Tìm m sao cho GTLN của hàm số \(y=x^3-3x+2m-1\) trên đoạn [0;2] bằng 5
A. 2 B. 3 C. 4 D. -2
Câu 3 : Tìm m sao cho GTLN của hàm số \(y=\frac{2x-m}{x-3}\) trên đoạn [0;2] bằng 3
A. m = 9 B. m = 7 C. m = 6 D. m = 1
Câu 4 : Cho các số thực dương x , y thỏa mãn xy + y = 2 . Tìm GTNN của biểu thức P = x + y2
A. 1 B. 2 C. \(\frac{3}{2}\) D. \(\frac{5}{2}\)
Cho hàm số \(y=\frac{mx-m^2-2}{-x+1}\) (m là tham số thực) thỏa mãn \(max_{\left[-4;-2\right]}y=\frac{-1}{3}\). Mệnh đề nào sau dưới đây đúng?
A ,\(\frac{-1}{2}< m< 0\) B, \(m>4\) C, \(1\le m< 3\) D, \(-3< m< \frac{-1}{2}\)
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=3.
CMR \(\frac{b+1}{8-\sqrt{a}}+\frac{c+1}{8-\sqrt{b}}+\frac{a+1}{8-\sqrt{c}}\le\frac{6}{7}\)
1) Cho hàm số y=f(x)= \(\frac{3x+1}{\sqrt{x^2+1}}\), giá trị lớn nhất của hàm sồ f(x) trên tập xác định của nó là:
\(A.\sqrt{10}\) \(B.2\) \(C.2\sqrt{2}\) D.Không tồn tại giá trị lớn nhất
2) Hàm số \(y=\frac{x-1}{\sqrt{x^2+2}}\) đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn [-3;0] lần lượt tại M , N . Khi đó M.N bằng:
A.2 B.0 C.6 \(D.\sqrt{2}\)
3) Gọi M,N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số \(f\left(x\right)=\left|x-3\right|\sqrt{x+1}\) trên đoạn [0;4] . Tính M+2N:
\(A.\frac{16\sqrt{3}}{9}\) \(B.3+\sqrt{5}\) \(C.\frac{16\sqrt{3}}{3}\) \(D.\sqrt{5}\)
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho GTNN của hàm số f(x) = \(\left(\frac{34}{{\underbrace{\sqrt{(x^2-3x+2m)^2}+1}}}\right)\)trên đoạn [0;3] bằng 2. Tổng tất cả các phần tử của S bằng ?
A. 8 B. -8 C. -6 D. -1
cho các số thực dương a,b,c thỏa mãn: \(a\left(3-5bc-5c^2\right)\le a^2\left(b+c\right)-b-6c\).
Tính giá trị nhỏ nhất của biểu thức Q=3a+b+6c
cho bốn số thực a,b,c và d thuộc đoạn \(\left[\frac{1}{2};\frac{2}{3}\right]\)
tìm giá trị lớn nhất của biểu thức T=\(16\left(\frac{a+c}{a+d}\right)^2+25\left(\frac{c+d}{a+b}\right)^2\)
Xét các số thực dương x,y thỏa mãn \(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{\left(x+1\right)^2}\) . Tìm gia trị nhỏ nhất \(P_{min}\) của P= 2y-3x
Xét các số thực dương x,y,z thỏa mãn x=y+z=4 và xy+yz+zx=5. Giá trị nhỏ nhất của biểu thức \(\left(x^3+y^3+z^3\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) bằng :