Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)
Trên miền \(D=\left\{\left(x;y;z\right):x>0;y>0;z>0;xyz=1\right\}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Với x, y, x là các số dương
Cho biểu thức :
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\) với \(\left(x,y,z\right)\in D=\left\{\left(x,y,z\right):x>0;y>0;z>0;x+y+x=1\right\}\)
Tìm giá trị lớn nhất của P
Cho x,y,z là ba số thực dương và \(P=\frac{3}{2x+y+\sqrt{8yz}}-\frac{8}{\sqrt{2\left(x^2+y^2+z^2\right)+4xz+3}}-\frac{1}{x+y+z}\) đạt giá trị nhỏ nhất. Tính x+y+z
Cho hai số thực \(x\ne0,y\ne0\) thay đổi và thỏa mãn điều kiện \(\left(x+y\right)xy=x^2+y^2-xy\). Giá trị lớn nhất M của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\) là:
Cho các số thực x,y với \(x\ge0\) thỏa mãn \(5^{x+3y}+5^{xy+1}+x\left(y+1\right)+1=5^{-xy-1}+\frac{1}{5^{x+3y}}-3y\) . Gọi m là giá trị nhỏ nhất của biểu thức T=x =2y +1. Tìm m?
Cho các số thực x,y thỏa mãn \(x+y+1=2\left(\sqrt{x-2}+\sqrt{y+3}\right)\). Giá trị lớn nhất của biểu thức \(M=3^{x+y-4}+\left(x+y+1\right).2^{7-x-y}-3\left(x^2+y^2\right)\) bằng
Xét các số thực dương x,y thỏa mãn \(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{\left(x+1\right)^2}\) . Tìm gia trị nhỏ nhất \(P_{min}\) của P= 2y-3x
Cho 2 số thực \(x,y\) thỏa \(2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\). Tìm giá trị lớn nhất của biểu thức \(P=x+2y\).