Xác định giá trị của x thỏa mãn:\(\left(x-1\right)\left(x+2\right)-x^2=5\)
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
cho hệ pt \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)
xác định giá trị của m để hệ có nghiệm duy nhất \(\left(x,y\right)\) thỏa mãn \(x+y\)>0
Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)
Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)
mà \(m^2-2m+2>0\forall m\)
nên 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(m-1\right)x-m+mx=2\\y=m-mx\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}mx-x-m+mx=2\\y=m-mx\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2mx-x=2+m\\y=m-mx\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\left(2m-1\right)=2+m\\y=m-mx\end{matrix}\right.\)
Hpt có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=m-m.\dfrac{2+m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất (x; y) = ...
Ta có: x + y > 0
\(\Leftrightarrow\) \(\dfrac{m^2-2m+2}{2m-1}>0\)
\(\Leftrightarrow\) \(\dfrac{\left(m-1\right)^2+1}{2m-1}\) > 0
\(\Leftrightarrow\) 2m - 1 > 0 (vì (m - 1)2 + 1 > 0 với mọi m)
\(\Leftrightarrow\) 2m > 1
\(\Leftrightarrow\) m > \(\dfrac{1}{2}\)
Kết hợp với m \(\ne\) \(\dfrac{1}{2}\) ta có: m > \(\dfrac{1}{2}\) thì hpt có nghiệm duy nhất (x;y) thỏa mãn x + y > 0
Vậy m > \(\dfrac{1}{2}\)
Chúc bn học tốt! (Chắc đúng :D)
cho đa thức f(x) xác định với mọi x thỏa mãn:
\(x\cdot f\left(x+2\right)=\left(x^2-9\right)\cdot f\left(x\right)\)
a) tính giá trị của f(5)
b) CMR ;đa thức f(x) có ít nhất 3 nghiệm
Cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) thỏa mãn \(f\left(-1\right)=2,f\left(0\right)=1,f\left(1\right)=7,f\left(\dfrac{1}{2}\right)=3\). Xác định giá trị \(a,b,c,d\).
\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)
\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)
Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Xác định các giá trị của m để ptr \(x^2-x+1-m=0\) có 2 nghiệp thực x1,x2 thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
help me: tìm n biết 2^n + 3^n = 5^n với n E N
Xác định các giá trị của m để phương trình \(x^2-x+1-m=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
\(x^2-x+1-m=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=1\\x_1x_2=\dfrac{c}{a}=1-m\end{matrix}\right.\)
Ta có :
\(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
\(\Leftrightarrow5\left(\dfrac{x_2+x_1}{x_1x_2}\right)-x_1x_2+4=0\)
\(\Leftrightarrow5\left(\dfrac{1}{1-m}\right)-\left(1-m\right)+4=0\)
\(\Leftrightarrow\dfrac{5}{1-m}-1+m+4=0\)
\(\Leftrightarrow\dfrac{5}{1-m}+m+3=0\)
\(\Leftrightarrow\dfrac{5+m\left(1-m\right)+3\left(1-m\right)}{1-m}=0\)
\(\Leftrightarrow5+m-m^2+3-3m=0\)
\(\Leftrightarrow-m^2-2m+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Cho hàm số \(y=f\left(x\right)\) liên tục trên tập xác định R, và thỏa mãn điều kiện phương trình \(f'\left(x\right)=0\) có 3 nghiệm \(x=-3\) ; \(x=0\) ; \(x=2\). Xét hàm số \(y=g\left(x\right)=f\left(x^2+4x-m\right)\), tính tổng các giá trị nguyên của tham số \(m\in[-10;10]\) để phương trình \(g'\left(x\right)=0\) có đúng 5 nghiệm phân biệt .
A. -6 B. 42 C. 50 D. 6
P/s: Kì thi cuối học kỳ 2 lớp 11 trường THPT Phan Huy Chú , thành phố Hà Nội
Em xin nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn nhiều ạ!
số giá trị của x thỏa mãn \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}\) là
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.