Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lNkhánh
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 16:51

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)

Lê Đăng Hải Phong
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 16:57

\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

Nguyễn Thanh Bình
7 tháng 11 2021 lúc 16:58

a) 9x2-49=0

(3x)2-72=0

<=> (3x-7)(3x+7)=0

th1: 3x-7=0

<=>3x=7

<=>x=\(\dfrac{7}{3}\)

th2: 3x+7=0

<=>3x=-7

<=>x=\(-\dfrac{7}{3}\)

 

 

Vũ Ngọc Diệp
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 19:31

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

Cíu iem
Xem chi tiết
Rin Huỳnh
21 tháng 9 2021 lúc 11:32

a) (x-1)(x-2)=0

x-1=0 --> x = 1

x-2=0 --> x = 2

Rin Huỳnh
21 tháng 9 2021 lúc 11:32

d) x^2(x + 1) + 27(x + 1)=0

(x+1)(x^2+27)=0

x+1=0 --> x = -1

x^2+27=0 (vô lí)

Cíu iem
Xem chi tiết
Minh Hiếu
21 tháng 9 2021 lúc 19:51

a) \(x\left(x-2\right)-x+2=0\)

\(x\left(x-2\right)-\left(x-2\right)=0\)

\(\left(x-1\right)\left(x-2\right)=0\)

TH1:x-1=0⇒x=1

TH2:x-2=0⇒x=2

Phan An
21 tháng 9 2021 lúc 19:53

a) x(x−2)−x+2=0

x(x−2)−(x−2)  =0

(x−1)(x−2)      =0

TH1:x-1=0⇒x=1

TH2:x-2=0⇒x=2

Minh Hiếu
21 tháng 9 2021 lúc 19:55

b) \(\left(3-2x\right)^2-\left(x-1\right)^2=0\)

\(\left(3-2x-x+1\right)\left(3-2x+x-1\right)=0\)

\(\left(3-3x+1\right)\left(3-x-1\right)=0\)

TH1:3-3x+1=0⇒x\(=\dfrac{4}{3}\)

TH2:3-x-1=0⇒x=2

Đỗ Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 10:14

\(a,\Leftrightarrow\left(x+1-2x-4\right)\left(x+1+2x+4\right)=0\\ \Leftrightarrow\left(-x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+2+x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,ĐK:x\ge0\\ PT\Leftrightarrow x-3\sqrt{x}+4\sqrt{x}-12=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)=0\\ \Leftrightarrow\sqrt{x}=3\left(\sqrt{x}+4>0\right)\\ \Leftrightarrow x=9\left(tm\right)\)

Mun SiNo
Xem chi tiết
ILoveMath
10 tháng 10 2021 lúc 9:31

tham khảo: https://hoc24.vn/cau-hoi/.2256230161739

Hồng Nhan
10 tháng 10 2021 lúc 9:36

a) ⇔ \(4x^2+4x-x-1=0\)

⇔ \(4x^2+3x-1=0\)

⇔ \(4x(x+1)-(x+1)=0\)

⇔ \((x+1)(4x-1)=0\)

⇒ \(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy...

b) \(x^3-4x^2+4x=0\)

⇔ \(x^2(x-2)-2x(x-2)=0\)

⇔ \((x-2)(x^2-2x)=0\)

⇒ \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy...

c) \(x^2-3x+2=0\)

⇔ \(x(x-2)-(x-2)=0\)

⇔ \((x-1)(x-2)=0\)

⇒ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy...

Quynh Tram Nguyenn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 10:18

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

Quynh Tram Nguyenn
2 tháng 1 2022 lúc 10:22

plss

Đỗ Tuệ Lâm
2 tháng 1 2022 lúc 10:41

a,

\(=\dfrac{3}{4x}.\left(x-3\right)\left(x+3\right)\)=0

\(\left\{{}\begin{matrix}\dfrac{3}{4x}=0\\x-3=0\\x+3=0\end{matrix}\right.\)

=>\(x=\left\{3,-3\right\}\)

b,

\(x^3-16x=0\\x\left(x^2-16\right)\\ x\left(x-4\right)\left(x+4\right)\)

\(\left\{{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

=>\(x=\left\{-4,0,4\right\}\)

d,

\(3x^3-27x=0\\ 3x\left(x^2-9\right)=0\\ 3x\left(x-3\right)\left(x+3\right)=0\)

\(\left\{{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\)

=>\(x=\left\{-3,0,3\right\}\)

e,

\(x^2+\left(x+1\right)+2x\left(x+1\right)=0\\ x\left(x+1\right)\left(x+2\right)=0\)

\(\left\{{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\)

=>\(x=\left\{-2,-1,0\right\}\)

f,

\(x\left(2x-3\right)-2\left(3-2x\right)=0\\ \left(2x-3\right)\left(x+2\right)=0\)

\(\left\{{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

Đinh Cẩm Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2021 lúc 20:31

a) Ta có: \(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)

mà 7>0

nên (x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

mà \(\dfrac{2}{3}>0\)

nên x(x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-2;2\right\}\)

c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)

d) Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

Minh Cao
11 tháng 1 2021 lúc 20:40

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

Minh Cao
11 tháng 1 2021 lúc 20:40

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

Hiển Trần
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 16:28

\(a,\Leftrightarrow3\left(x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow\left(x^2-2\right)\left(6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=2\\6x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=-\dfrac{1}{6}\end{matrix}\right.\\ c,\Leftrightarrow\left(x-2013\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=\dfrac{1}{4}\end{matrix}\right.\\ d,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)