a) \(x\left(x-2\right)-x+2=0\)
\(x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-1\right)\left(x-2\right)=0\)
TH1:x-1=0⇒x=1
TH2:x-2=0⇒x=2
a) x(x−2)−x+2=0
x(x−2)−(x−2) =0
(x−1)(x−2) =0
TH1:x-1=0⇒x=1
TH2:x-2=0⇒x=2
b) \(\left(3-2x\right)^2-\left(x-1\right)^2=0\)
\(\left(3-2x-x+1\right)\left(3-2x+x-1\right)=0\)
\(\left(3-3x+1\right)\left(3-x-1\right)=0\)
TH1:3-3x+1=0⇒x\(=\dfrac{4}{3}\)
TH2:3-x-1=0⇒x=2
a. x(x - 2) - x + 2 = 0
<=> x(x - 2) - (x - 2) = 0
<=> (x - 1)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b. (3 - 2x)2 - (x - 1)2 = 0
<=> (3 - 2x - x + 1)(3 - 2x + x - 1) = 0
<=> (4 - 3x)(2 - x) = 0
<=> \(\left[{}\begin{matrix}4-3x=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
c. 81x4 - x2 = 0
<=> x2(81x2 - 1) = 0
<=> x2\(\left[\left(9x\right)^2-1^2\right]=0\)
<=> x2(9x - 1)(9x + 1) = 0
<=> \(\left[{}\begin{matrix}x^2=0\\9x-1=0\\9x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{9}\\x=\dfrac{-1}{9}\end{matrix}\right.\)
d. x3 + x2 + 27x + 27 = 0
<=> x2(x + 1) + 27(x + 1) = 0
<=> (x2 + 27)(x + 1) = 0
<=> \(\left[{}\begin{matrix}x^2+27=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{27}\\x=-1\end{matrix}\right.\)