8x^3 - 4x^2 - 4x +1=0
Tìm x
x^2 - 4x - 12 = 0
4x^2 + 4x - 24 = 0
8x^3 - 12x^2 + 6x - 1 = 0
|2 + 3x| = |4x - 3|
|3/2x + 1/2| = |4x - 1|
|5/4x - 7/2| - |5/8x + 3/5| = 0
|7/5x + 3/2| - |4/3 - 1/4| = 0
\(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=3-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{7};5\right\}\)
\(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{11};\frac{3}{5}\right\}\)
\(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
\(\Leftrightarrow\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
Giải tiếp tương tự
Sau đó giải tiếp câu còn lại
a, \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Rightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=-4x+3\end{cases}\Rightarrow\orbr{\begin{cases}3x-4x=-3-2\\3x+4x=3-2\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-5\\7x=1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}}}\)
Câu b tương tự
c, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
\(\Rightarrow\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}\frac{5}{4}x-\frac{5}{8}x=\frac{3}{5}+\frac{7}{2}\\\frac{5}{4}x+\frac{5}{8}x=-\frac{3}{5}+\frac{7}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}}\)
d, \(\left|\frac{7}{5}x+\frac{3}{2}\right|-\left|\frac{4}{3}-\frac{1}{4}\right|=0\)
\(\Rightarrow\left|\frac{7}{5}x+\frac{3}{2}\right|-\frac{13}{12}=0\)
\(\Rightarrow\left|\frac{7}{5}x+\frac{3}{2}\right|=\frac{13}{12}\)
Đến đây dễ rồi, tự làm tiếp :)
P/s: Ko chắc, sai ib với t :v
a)2(x-4)^2-4x(4-x)=0
b)4x^2-8x=0
c)3x^2+6x=0
d)8x^2+4x^3=0
\(a,< =>2\left(x-4\right)^2+4x\left(x-4\right)=0< =>\left(x-4\right)\left(2x-8+4x\right)=0\)\(< =>\left(x-4\right)\left(6x-8\right)=0< =>\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)
b,\(< =>4x\left(x-2\right)=0< =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c,\(< =>3x\left(x+2\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d,\(< =>4x^2\left(2+x\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
tìm x biết
a)4x^2+4x-3=0
b)x^4-3x^3-x+3=0
c)x^2(x-1)-4x^2+8x-4=0
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
tìm x biết
a)4x^2+4x-3=0
b)x^4-3x^3-x+3=0
c)x^2(x-1)-4x^2+8x-4=0
tìm x biết 4x^2-4x=-1
8x^3+12x^2+6x+1=0
a,4x^2-4x+1=0
4x^2-2x-2x+1=0
2x (2x-1)-(2x-1)=0
(2x-1)(2x-1)=0
(2x-1)^2=0
=>2x-1=0 <=> x=1/2
Cho biểu thức P=(2x^3-x^4-2x+1)/(4x^2-1)+(8x^2-4x+2)/(8x^3+1) với x khác 1/2; x khác -1/2
a,Rút gọn P
b,Tìm x để P>0
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
chứng minh phương trình
a) \(x^5-5x^3+4x-1=0\) có đúng 5 nghiệm
b) \(4x^3-8x^2+1=0\) có nghiệm thuộc khoảng (-1;2)
a: Đặt \(A\left(x\right)=x^5-5x^3+4x-1\)
Vì A(x) là đa thức bậc 5 nên A(x) có tối đa 5 nghiệm(*)
\(A\left(-2\right)=\left(-2\right)^5-5\cdot\left(-2\right)^3+4\cdot\left(-2\right)-1=-1\)
\(A\left(-1,5\right)=\left(-1,5\right)^5-5\cdot\left(-1,5\right)^3+4\cdot\left(-1,5\right)-1=\dfrac{73}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(-2\right)\cdot A\left(-1,5\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-2;-1,5)(1)
Vì \(A\left(-1,5\right)\cdot A\left(1\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-1,5;1)(2)
\(A\left(0\right)=0^5-5\cdot0^3+4\cdot0-1=-1\)
\(A\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5-5\cdot\left(\dfrac{1}{2}\right)^3+4\cdot\dfrac{1}{2}-1=\dfrac{13}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(0\right)\cdot A\left(\dfrac{1}{2}\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (0;1/2)(3)
Vì A(1/2)*A(1)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (1/2;1)(4)
\(A\left(2\right)=2^5-5\cdot2^3+4\cdot2-1=-1\)
\(A\left(3\right)=3^5-5\cdot3^3+4\cdot3-1=119\)
Vì A(2)*A(3)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (2;3)(5)
Từ (1),(2),(3),(4),(5) suy ra A(x) có ít nhất 5 nghiệm
Kết hợp với cả (*), ta được: A(x) có đúng 5 nghiệm
b: Đặt \(B\left(x\right)=4x^3-8x^2+1\)
\(B\left(-0,5\right)=4\cdot\left(-0,5\right)^3-8\cdot\left(-0,5\right)^2+1=-1,5\)
\(B\left(0\right)=4\cdot0^3-8\cdot0^2+1=1\)
Vì \(B\left(-0,5\right)\cdot B\left(0\right)< 0\)
nên phương trình B(x)=0 có một nghiệm thuộc (-0,5;0)
=>Phương trình \(4x^3-8x^2+1=0\) có nghiệm thuộc (-1;2)