1/ sin2x = 1+ căn 2 . cosx + cos2x
2/ sin^2 x+ sin^2 3x + sin^2 5x = 3/2
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
•Sin3x - sin5x = sin2x
•Cosx + cos2x + cos3x = -1
•Sin2x + sin22x +sin23x + sin24x = 2
•1 + 2 sinxcos2x = sinx + cos2x
•Tan3x - tanx = sin2x
•(1-tanx)(1+sin2x) = 1+ tanx
\(\frac{ }{ }\)
a) chứng minh không phụ thuộc vào x
Q= [(1-sinx-cos2x+sin3x)/(cosx+sin2x+cos3x)]*tan(x-(pi/2)
b) chứng minh:
cos 5x*cos 3x+sin 7x*sin x=2cos^3 2x -2 cos^2 x +1
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
\(1,sin^{2008}x+cos^{2008}x=1\)
\(2,sin^5x+cos^5x+sin2x+cos2x=1+\sqrt{2}\)
\(3,4cos^2x+3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0\)
1.
Do \(-1\le sinx;cosx\le1\Rightarrow\left\{{}\begin{matrix}sin^{2018}x\le sin^2x\\cos^{2018}x\le cos^2x\end{matrix}\right.\) với mọi x
\(\Rightarrow sin^{2018}x+cos^{2018}x\le sin^2x+cos^2x\)
\(\Rightarrow sin^{2018}x+cos^{2018}x\le1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}sinx=0\\cosx=0\end{matrix}\right.\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
2.
Do \(-1\le cosx;sinx\le1\Rightarrow\left\{{}\begin{matrix}sin^5x\le sin^2x\\cos^5x\le cos^2x\end{matrix}\right.\)
\(\Rightarrow sin^5x+cos^5x\le sin^2x+cos^2x=1\)
Lại có: \(sin2x+cos2x=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\le\sqrt{2}\)
\(\Rightarrow sin^5x+cos^5x+sin2x+cos2x\le1+\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=1\\sin2x+cos2x=\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=1\\sin2x+cos2x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=1\\-1=\sqrt{2}\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=1\\2cos^2x-1=\sqrt{2}\left(vn\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
3.
\(\Leftrightarrow\left(4cos^2x-4\sqrt{3}cosx+3\right)+\left(3tan^2x+2\sqrt{3}tanx+1\right)=0\)
\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)^2+\left(\sqrt{3}tanx+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2cosx-\sqrt{3}=0\\\sqrt{3}tanx+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+l\pi\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{6}+k2\pi\)
giải giúp mình với:
a,sin3x+sin2x=5sinx
b,√3 sin2x+cos2x=2cosx-1
c,cos4x+sin6x=cos2x
d,√2 sin(2x+π/4)=2sinx+1
e,sin23x-cos4x=sin25x-cos26x
đây là câu a
mk cảm thấy cứ hơi sai sai . bạn xem lại hộ mk nhé