1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
Chứng minh VT=VP:
a) 2.(sinx+cosx+1)2.(sinx+cosx-1)2=1-cos4x
b) \(\frac{\text{3-4cos2a+cos4a}}{3+\text{4cos2a+cos4a}}\)= tan4a
c) (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x
Cần GẤP ạ! Cảm ơn nhiều ạ!
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
Chứng minh rằng: (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x, \(\forall x\in R\)
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
Rút gọn biểu thức sau:
A=4sinx*cosx*cos2x*cos4x
B=cos^4x -6cos^x*sin^2x+sim^4x
C=\(\frac{\text{cos2a-cos4a}}{sin4a+sin2a}\)
D=\(\frac{\text{cosa+cos3a+cos5a}}{sina+sin3a+sin5a}\)
E=sin^2(\(\frac{\pi}{8}\)+\(\frac{x}{2}\))-sin^2(\(\frac{\pi}{8}\)-\(\frac{x}{2}\))
F=\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
Câu 1: Chứng minh
\(\cos5x.\cos3x+\sin7x.\sin x=\cos2x.\cos4x\)
\(\frac{1-2\sin^22x}{1-\sin4x}=\frac{1+\tan2x}{1-\tan2x}\)
Câu 2:Rút gọn biểu thức
\(2\cos x-3\cos\left(\pi-x\right)+5\sin\left(\frac{7\pi}{x}-x\right)+cot\left(\frac{3\pi}{2}-x\right)\)
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)