Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Hoàng Lĩnh
Xem chi tiết
Lý Diễm Quỳnh
10 tháng 5 2022 lúc 20:04

lo

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2017 lúc 2:25

Hàm số đồng biến trên R

⇔ y ' = x 2 + 2 m x - m ≥ 0 ⇔ ∆ ' = m 2 + m ≤ 0 ⇔ - 1 ≤ m ≤ 0

Suy ra giá trị nhỏ nhất của m là -1

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 9 2017 lúc 10:20

Thao Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 21:55

\(y'=\dfrac{1}{3}\cdot3x^2-m\cdot2x+2m+3=x^2-2m\cdot x+2m+3\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x thuộc R

=>Δ=(-2m)^2-4(2m+3)<=0 và 1>0

=>4m^2-8m-12<=0 

=>m^2-2m-3<=0

=>(m-3)(m+1)<=0

=>-1<=m<=3

mà m nguyên

nên \(m\in\left\{-1;0;1;2;3\right\}\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:19

a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)

=>\(y'=-x^2-2m\cdot x+4\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)

=>\(4m^2+16< =0\)

mà \(4m^2+16>=16>0\forall m\)

nên \(m\in\varnothing\)

b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)

=>\(y'=-x^2-m\cdot x+1\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)

=>\(m^2+4< =0\)

mà \(m^2+4>=4>0\forall m\)

nên \(m\in\varnothing\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 8:36

a: \(y=-x^3-3x^2+\left(5-m\right)x\)

=>\(y'=-3x^2-3\cdot2x+5-m\)

=>\(y'=-3x^2-6x+5-m\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(36+12\left(5-m\right)< =0\)

=>\(36+60-12m< =0\)

=>\(-12m+96< =0\)

=>-12m<=-96

=>m>=8

b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)

=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)

=>\(y'=3x^2+\left(4m-4\right)x+m\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)

=>\(16m^2-32m+16-12m< =0\)

=>\(16m^2-44m+16< =0\)

=>\(4m^2-11m+4< =0\)

=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2018 lúc 15:44

Đáp án C

Trọng Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 15:07

a: để hàm số đồng biến trên R thì m-1>0

hay m>1

b: Để hàm số nghịch biến thì m>0

Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 15:12

c, Hs nghịch biến \(\Leftrightarrow-m^2+1< 0\Leftrightarrow\left[{}\begin{matrix}m< -1\\1< m\end{matrix}\right.\)

d, Hs đồng biến \(\Leftrightarrow\dfrac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:19

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2