Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Minh
Xem chi tiết
Nguyen Tran Quynh Lan
18 tháng 11 2016 lúc 17:38

a. Xét tam giác MOA và tam giác MOB có :

OM là cạnh chung

MOA = MOB ( vì ox là tia phân giác góc xOy )

OMA = OMB ( = 90 độ )

Nên tam giác MOA = tam giác MOB ( c - c - c )

b. Ta có tam giác MOA = tam giác MOB ( cmt )

Nên MA = MB

Do đó M là trung điểm của AB

Vì vậy OM là đường trung trực của AB

Nhớ tk mk nha !!!

 

Phương An
18 tháng 11 2016 lúc 17:38

Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:

AOM = BOM (OM là tia phân giác của AOB)

OM chung

=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)

=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB

AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A

có MO là tia phân giác của AMB (chứng minh trên)

=> MO là đường trung trực của AB

Mon Be
Xem chi tiết
Nguyễn Minh Tuân
19 tháng 3 2021 lúc 14:39

+ Xét tam giác AHO ( góc A=90°) và tam giác BHO (góc B=90°) có: OH là cạnh chung

Góc BOH=AOH

=>TAM GIÁC AHO=BHO ( Cạnh huyền góc nhọn)

=>HA=HB

Anni
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 17:46

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có 

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-AI^2}=8\left(cm\right)\)

c: Xét ΔAIK vuông tại A và ΔBIM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔAIK=ΔBIM

Suy ra: AK=BM

ngọc baby
Xem chi tiết
ngọc baby
19 tháng 3 2022 lúc 15:55

j

 

ngọc baby
19 tháng 3 2022 lúc 15:55

j

ngọc baby
19 tháng 3 2022 lúc 15:55

j

Truc Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2022 lúc 11:11

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-IA^2}=8\left(cm\right)\)

c: Xét ΔIAK vuông tại A và ΔIBM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔIAK=ΔIBM

Suy ra: AK=BM

Văn Tâm Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 9:43

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

góc AOI=góc BOI

=>ΔOAI=ΔOBI

=>OA=OB và IA=IB

b: OA=căn 10^2-6^2=8cm

c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có

IB=IA

góc AIK=góc BIM

=>ΔIBM=ΔIAK

d: OA+AK=OK

OB+BM=OM

mà OA=OB và AK=BM

nên OK=OM

mà IM=IK

nên OI là trung trực của MK

=>O,I,C thẳng hàng

Clear YT_VN
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2021 lúc 21:12

a) Xét ΔOAN vuông tại A và ΔOBN vuông tại B có 

ON chung

\(\widehat{AON}=\widehat{BON}\)(ON là tia phân giác của \(\widehat{AOB}\))

Do đó: ΔOAN=ΔOBN(cạnh huyền-góc nhọn)

Suy ra: NA=NB(hai cạnh tương ứng)

b) Ta có: ΔOAN=ΔOBN(cmt)

nên OA=OB(hai cạnh tương ứng)

Xét ΔOAB có OA=OB(cmt)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

c) Xét ΔAND vuông tại A và ΔBNE vuông tại B có 

NA=NB(cmt)

\(\widehat{AND}=\widehat{BNE}\)(hai góc đối đỉnh)

Do đó: ΔAND=ΔBNE(cạnh góc vuông-góc nhọn kề)

Suy ra: ND=NE(hai cạnh tương ứng)

d) Ta có: ΔAND=ΔBNE(cmt)

nên AD=BE(Hai cạnh tương ứng)

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BE=OE(B nằm giữa O và E)

mà OA=OB(cmt)

và AD=BE(cmt)

nên OD=OE

Ta có: OD=OE(cmt)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ND=NE(cmt)

nên N nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra ON là đường trung trực của DE

hay ON⊥DE(đpcm)

Đào Thị Lê Na
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
Tô Mì
28 tháng 1 2022 lúc 14:22

a. Xét △OAM và △OBM có:

\(\hat{OAM}=\hat{OBM}=90^o\)

\(OM\)  chung

\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))

\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)

\(\Rightarrow MA=MB\) (đpcm).

 

b. Từ a. \(\Rightarrow OA=OB\)

⇒ Tam giác OAB cân tại O.

 

c. Xét △BME và △AMD có:

\(\hat{MBE}=\hat{MAD}=90^o\)

\(MA=MB\left(cmt\right)\)

\(\hat{AMD}=\hat{BME}\) (đối đỉnh)

\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)

\(\Rightarrow MD=ME\left(đpcm\right)\)

 

d. Ta có: \(OA=OB\left(cmt\right)\)\(AD=DE\) (suy ra từ c.

\(\Rightarrow OA+AD=OB+DE\)

\(\Rightarrow OD=OE\)

⇒ Tam giác ODE cân tại O.

Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.

\(\Rightarrow OM\perp DE\left(đpcm\right)\)

Tien Anh
Xem chi tiết