lập phương trình đường tròn có bán kính =1,tiếp xúc với trục hoành vầ có tâm nằm trên đường thẳng ;x+y-3=0
Trong mặt phẳng tọa độ Oxy, cho đường tròn (S) có tâm I nằm trên đường thẳng y = - x , bán kính bằng R = 3 và tiếp xúc với các trục tọa độ. Lập phương trình của (S), biết hoành độ tâm I là số dương.
A. x - 3 2 + y - 3 2 = 9
B. x - 3 2 + y + 3 2 = 9
C. x - 3 2 - y - 3 2 = 9
D. x + 3 2 + y + 3 2 = 9
Gọi I a ; - a a > 0 thuộc đường thẳng y = - x
(S) tiếp xúc với các trục tọa độ
Chọn B.
trong mặt phẳng oxy viết phương trình đường tròn (c) có tâm nằm trên trục hoành và đường tròn (c) tiếp xúc với cả hai đường thẳng (d1):2x-y-1=0 (d2):x-2y+1=0 Trong mặt phẳng Oxy,viết phương trình đường tròn
Bài tập :
B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0
B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng 4x – 2y – 8 = 0
Đường tròn có tâm nằm trên đường thẳng ∆: x + 2y – 6 = 0 và tiếp xúc với hai trục tọa độ. Khi đó bán kính của đường tròn là
A.R = 2 hoặc R = 4
B.R = 2 hoặc R = 6
C.R = 3 hoặc R = 6
D.R = 3 hoặc R = 4
Do tâm nằm trên đường thẳng ∆: x + 2y – 6 = 0 nên tâm là I(6 – 2y; y).
Đường tròn tiếp xúc với hai trục tọa độ nên:
6 − 2 y = y ⇔ 6 − 2 y = y 6 − 2 y = − y ⇔ − 3 y = − 6 − y = − 6 ⇔ y = 2 y = 6
Bán kính đường tròn là R = 2 hoặc R = 6
ĐÁP ÁN B
lập phương trình đường tròn có tâm thuộc đường thẳng \(\Delta\) \(x+2y+3=0\), có bán kính \(R=\sqrt{2}\) và tiếp xúc với đường thẳng d : \(x-y+1=0\)
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)
Điền các từ thích hợp vào chỗ trống (...):
a) Tâm của các đường tròn có bán kính 1cm tiếp xúc ngoài với đường tròn (O; 3cm) nằm trên ...
b) Tâm của các đường tròn có bán kính 1cm tiếp xúc trong với đường tròn (O; 3cm) nằm trên ...
a) Tâm của các đường tròn có bán kính 1cm tiếp xúc ngoài với đường tròn (O; 3cm) nằm trên đường tròn (O; 4cm).
b) Tâm của các đường tròn có bán kính 1cm tiếp xúc trong với đường tròn (O; 3cm) năm trên đường tròn (O; 2cm).
Lập phương trình đường tròn trong các trường hợp sau:
a) \((C)\) có tâm \(I(1;5)\) và bán kính \(r = 4\)
b) \((C)\) có đường kính MN với \(M(3; - 1)\)và \(N(9;3)\)
c) \((C)\) có tâm \(I(2;1)\) và tiếp xúc với đường thẳng \(5x - 12y + 12 = 0\)
d) \((C)\) có tâm \(A(1; - 2)\) và đi qua điểm \(B(4; - 5)\)
a) Đường tròn (C) tâm \(I(1;5)\), bán kính \(r = 4\) có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 5} \right)^2} = 16\)
b) \(MN = \sqrt {{{\left( {9 - 3} \right)}^2} + {{\left( {3 - ( - 1)} \right)}^2}} = 2\sqrt {13} \), suy ra bán kính là \(\sqrt {13} \)
Tâm của đường tròn là trung điểm của MN: \(I(6;1)\)
Đường tròn (C) tâm \(I\left( {6;1} \right)\)và bán kính là \(\sqrt {13} \) có phương trình: \({\left( {x - 6} \right)^2} + {\left( {y - 1} \right)^2} = 13\)
c) Ta có bán kính của đường tròn \(r = d\left( {I,d} \right) = \frac{{\left| {5.2 - 12.1 + 11} \right|}}{{\sqrt {{5^2} + {{12}^2}} }} = \frac{9}{{13}}\)
Đường tròn (C) tâm \(I\left( {2;1} \right)\)và bán kính là \(\frac{9}{{13}}\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{81}}{{169}}\)
d) Bán kính của đường tròn là \(r = AB = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {( - 5) - ( - 2)} \right)}^2}} = 3\sqrt 2 \)
Đường tròn (C) tâm \(A(1; - 2)\)và bán kính là \(3\sqrt 2 \) có phương trình: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 18\)
Cho đường thẳng xy. Tâm của các đường tròn có bán kính 1cm và tiếp xúc với đường thẳng xy nằm trên đường nào?
Gọi O là tâm của một đường tròn bất kì có bán kính bằng 1cm và tiếp xúc với đường thẳng xy.
Ta có: R = 1, và đường tròn tiếp xúc với đường thẳng xy nên ta có: d = R, suy ra d = 1.
=> Tâm O cách đường thẳng xy một khoảng cố định 1cm nên nằm trên các đường thẳng (a) và (b) song song với xy và cách xy một khoảng là 1cm.