Phân tích đa thức thành nhân tử x7+x2+1 (đa thức dạng x3m+1+x3n+2+1 có chứa nhân tử dạng x2 +x+1)
Phân tích đa thức thành nhân tử: x7 + x2 + 1
Phân tích đa thức x 7 – x 2 – 1 thành nhân tử ta được
A. x 2 − x + 1 x 5 + x 4 + x 2 − x − 1
B. x 2 − x + 1 x 5 + x 4 − x 2 − x − 1
C. x 2 + x + 1 x 5 + x 4 + x 2 − x − 1
D. x 2 + x + 1 x 5 + x 4 − x 2 − x − 1
Ta có
x 7 – x 2 – 1 = x 7 – x – x 2 + x – 1 = x ( x 6 – 1 ) – ( x 2 – x + 1 ) = x ( x 3 – 1 ) ( x 3 + 1 ) – ( x 2 – x + 1 ) = x ( x 3 – 1 ) ( x + 1 ) ( x 2 – x + 1 ) – ( x 2 – x + 1 ) = ( x 2 – x + 1 ) [ x ( x 3 – 1 ) ( x + 1 ) – 1 ] = x 2 − x + 1 x 4 − x x + 1 − 1 = x 2 − x + 1 x 5 + x 4 − x 2 − x − 1
Đáp án cần chọn là: B
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử:
(x2+x+1)(x2+x+5)-21
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)+5-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-16\)
\(=\left(x^2+x+8\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+8\right)\left(x+2\right)\left(x-1\right)\)
bài 4 : phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau :
a, A= 4(x - 2) (x+1) + (2x - 4)2 +(x+1)2 tại x = \(\dfrac{1}{2}\)
b, B= x9 - x7 - x6 - x5 + x4 + x3 + x2 - 1 tại x=1
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
phân tích đa thức sau thành nhân tử
a) (x+2)(x2-2x+1)
Phân tích đa thức thành nhân tử:
3(x-1)-x+x2
\(=3\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử:
1) x2 - y2 - 2x + 1
2) x3 - 2x2 - x + 2
3) x2 - 2x2 - x + 2
1: =(x-1-y)(x-1+y)
3: =(x-1)(x+1)(x-2)
x3-x2-x+1 → phân tích các đa thức thành nhân tử
\(x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\)
\(x^3-x^2-x+1=\left(x^3-x^2\right)-\left(x-1\right)=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)