Giải phương trình :
\(4^{\log_3x}+4^{\log_3x}=2x\)
Giải các phương trình sau :
a) \(\ln\left(4x+2\right)-\ln\left(x-1\right)=\ln x\)
b) \(\log_2\left(3x+1\right)\log_3x=2\log_2\left(3x+1\right)\)
c) \(2^{\log_3x^2}.5^{\log_3x}=400\)
d) \(\ln^3x-3\ln^2x-4\ln x+12=0\)
a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>1\)
Khi đó biến đổi pương trình như sau:
\(\ln\dfrac{4x+2}{x-1}=\ln x\)
\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)
\(\Leftrightarrow4x+2=x\left(x-1\right)\)
\(\Leftrightarrow x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)
b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>0\)
Biến đổi phương trình như sau:
\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)
\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)
Vậy nghiệm là x = 9.
c) Điều kiện: x > 0.
Khi đó biến đổi phương trình như sau:
\(2^{\log_3x^2}.5^{\log_3x}=400\)
\(\Leftrightarrow2^{2\log_3x}.5^{\log_3x}=400\)
\(\Leftrightarrow\left(2^2.5\right)^{\log_3x}=400\)
\(\Leftrightarrow20^{\log_3x}=20^2\)
\(\Leftrightarrow\log_3x=2\)
\(\Leftrightarrow x=3^2=9\) (thỏa mãn)
Giải phương trình
\(\left(\log_3x\right)^2+\sqrt{\left(\log_3x\right)^2+1}-5=0\)
sao bạn k bấm máy tính. thi trắc nghiệm mà.
Đặt $\log_3x=a\Rightarrow a^2+\sqrt{a^2+1}-5=0\Leftrightarrow 4a^2+4\sqrt{a^2+1}-20=0$
$\Leftrightarrow (2\sqrt{a^2+1}+1)^2-25=0 \Rightarrow 2\sqrt{a^2+1}+1=5$
$\rightarrow a=\pm\sqrt{3}\Rightarrow x=3^a=3^{\sqrt{3}}$ hoặc $x=3^{-\sqrt{3}}$
Mình viết lại lời giải @@ Sao cứ bị lỗi công thức hoài nhỉ có cách nào sửa được không?
Đặt \(\log_3x=a\Rightarrow a^2+\sqrt{a^2+1}-5=0\Leftrightarrow4a^2+4\sqrt{a^2+1}-20=0\)
\(\Leftrightarrow\left(2\sqrt{a^2+1}+1\right)^2-25=0\Rightarrow2\sqrt{a^2+1}+1=5\) .Trường hợp $-5$ suy ra vô lý
\(\Rightarrow a=\pm\sqrt{3}\Leftrightarrow x=3^{\pm\sqrt{3}}\). Thử lại thấy đúng nên có hai nghiệm trên là nghiệm của PT
Giải các phương trình logarit sau :
a) \(\frac{1}{4+\log_3x}+\frac{1}{2-\log_3x}=1\)
b) \(-\ln^3x+2\ln x=2-\ln x\)
c)\(x^{lg^2x^2-3lgx-\frac{9}{2}}=10^{-2lgx}\)
d) \(\log_2\sqrt{\left|x\right|}-4\sqrt{\log_4\left|x\right|}-5=0\)
d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1
Phương trình đã cho tương đương với :
\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)
\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)
Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :
\(t^2-4t-5=0\) hay t=-1 V t=5
Do \(t\ge0\) nên t=5
\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn
Vậy \(x=\pm2^{50}\) là nghiệm của phương trình
c) Điều kiện x>0. Phương trình đã cho tương đương với :
\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)
\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)
\(\Leftrightarrow8lg^2x-6lgx-5=0\)
Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành
\(8t^2-6t-5=0\) hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)
Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)
Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)
Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)
b) Điều kiện x>0, đặt \(t=lgx\left(t\in R\right)\) , phương trình trở thành
\(t^3-2t^2-t+2=0\Leftrightarrow\left(t-1\right)\left(t+1\right)\left(t-2\right)=0\)
Do đó, t nhận các giá trị : 1, -1 hoặc 2
Với t = 1 thì \(lgx=1\Leftrightarrow x=10^1=10\)
Với t = - thì \(lgx=-1\Leftrightarrow x=10^{-1}=\frac{1}{10}\)
Với t = 2 thì \(lgx=2\Leftrightarrow x=10^2=100\)Giải hệ phương trình: \(\hept{\begin{cases}log_3x+\sqrt{\left(log_3x-1\right)^2+1}=\frac{y}{3}+1\\log_3y+\sqrt{\left(log_3y-1\right)^2+1}=\frac{x}{3}+1\end{cases}}\)
trong cac phan so sau :2/3 ;2/8 ;17/300 ;1/30.phan so thap phan la phan so
Tìm các giá trị của tham số \(m\) để phương trình \(\left(\log_3x\right)^2-m\log_3x+2m-7=0\) có hai nghiệm thực \(x_1;x_2\) thỏa \(x_1.x_2=81\)
Đặt \(t=log_3x\).
Phương trình ban đầu trở thành: \(t^2-mt+2m-7=0\) (*)
\(t_1+t_2=log_3\left(x_1x_2\right)=log_381=4\)
Để phương trình ban đầu có 2 nghiệm \(x_1,x_2\) thoả \(x_1x_2=81\) thì phương trình (*) phải có 2 nghiệm \(t_1,t_2\) thoả \(t_1+t_2=4\):
\(\left\{{}\begin{matrix}\Delta\ge0\\m=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-4\left(2m-7\right)\ge0\\m=4\end{matrix}\right.\Leftrightarrow m=4\)
Giải phương trình :
\(\log_3\left(x+2\right)=1-\log_3x\)
Với điều kiện xác định x>0 (1)
Với điều kiện đó, phương trình đã cho trở thành : \(\log_3\left(x+2\right)+\log_3x=1\)
\(\Leftrightarrow\log_3\left(x\left(x+2\right)\right)=\log_33\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x=1\)
Tìm các giá trị thực của tham số m để phương trình \(\log_3^2x-m\log_3x+2m-7=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn \(x_1+x_2=9\)
Giải hệ phương trình :
\(\begin{cases}\log_2\sqrt{x+3}=1+\log_3y\\\log_2\sqrt{y+3}=1+\log_3x\end{cases}\)
Điều kiện x, y dương. Hệ phương trình tương đương với hệ :
\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)
Cộng vế với vế 2 phương trình của hệ (*) ta có :
\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)
Xét hàm số :
\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).
Dễ thấy hàm số luôn đồng biến trên \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).
Thay vào một trong hai phương trình của hệ (*), ta được
\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)
hay
\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)
\(\Leftrightarrow x+3=4.x\log^{\log_34}\)
\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)
Xét
\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :
\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)
Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)
Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)
Hệ phương trình đã cho có nghiệm duy nhất là (1;1)
Tìm tập nghiệm S của bất phương trình \(\log_2x+\log_3x>1+\log_2x.\log_3x\)
\(log_2x-log_2x.log_3x+log_3x-1>0\)
\(\Leftrightarrow log_2x\left(1-log_3x\right)-\left(1-log_3x\right)>0\)
\(\Leftrightarrow\left(log_2x-1\right)\left(1-log_3x\right)>0\)
\(\Rightarrow2< x< 3\)