Tìm x,biết: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{5-2x}\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
Tìm x biết :
\(\left(x-1\right)\left(x^2+x+1\right)+\left(2x\right)\left(4-2x+x^2\right)=5-x\)
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
Tìm x:
a, \(x-2=\left(x-2\right)^2\)
b,\(x+5=2\left(x+5\right)^2\)
c,\(\left(x^2+1\right)\left(2x-1\right)+2x=1\)
d,\(\left(x^2+3\right)\left(x+1\right)+x=1\)
a) \(x-2=\left(x-2\right)^2\)
\(\left(x-2\right)^2-\left(x-2\right)=0\)
\(\left(x-2\right)\left(x-2-1\right)=0\)
\(\left(x-2\right)\left(x-3\right)=0\)
\(\Rightarrow x-2=0\) hoặc \(x-3=0\)
*) \(x-2=0\)
\(x=2\)
*) \(x-3=0\)
\(x=3\)
Vậy \(x=2;x=3\)
b) \(x+5=2\left(x+5\right)^2\)
\(2\left(x+5\right)^2-\left(x+5\right)=0\)
\(\left(x+5\right)\left[2\left(x+5\right)-1\right]=0\)
\(\left(x+5\right)\left(2x+10-1\right)=0\)
\(\left(x+5\right)\left(2x+9\right)=0\)
\(\Rightarrow x+5=0\) hoặc \(2x+9=0\)
*) \(x+5=0\)
\(x=-5\)
*) \(2x+9=0\)
\(2x=-9\)
\(x=-\dfrac{9}{2}\)
Vậy \(x=-5;x=-\dfrac{9}{2}\)
c) \(\left(x^2+1\right)\left(2x-1\right)+2x=1\)
\(\left(x^2+1\right)\left(2x-1\right)+2x-1=0\)
\(\left(x^2+1\right)\left(2x-1\right)+\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x^2+1+1\right)=0\)
\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow2x-1=0\) hoặc \(x^2+2=0\)
*) \(2x-1=0\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
*) \(x^2+2=0\)
\(x^2=-2\) (vô lí)
Vậy \(x=\dfrac{1}{2}\)
d) Sửa đề:
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2+3+1\right)=0\)
\(\left(x+1\right)\left(x^2+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(x^2+4=0\)
*) \(x+1=0\)
\(x=-1\)
*) \(x^2+4=0\)
\(x^2=-4\) (vô lí)
Vậy \(x=-1\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm số tự nhiên x , biết
\(2\cdot\left(x-1\right)^2=8\)
\(\left(2x+1\right)^3=125\)
\(\left(x-2\right)^5=243\)
\(5\left(x-4\right)^2-7=13\)
\(221-\left(3x+2\right)^3=96\)
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
Tìm x, Biết:
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=-2,5\)
<=>(2x2-x)(x+5)-(2x3+9x2+x+4,5)=-2,5
<=>(2x3+10x2-x2-5x)-2x3-9x2-x-4,5+2,5=0
<=>2x3+10x2-x2-5x-2x3-9x2-x-4,5+2,5=0
<=>-9x=2
<=>x=-2/9
tìm x biết : \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(4x+26=-12\)
\(4x=-38\)
\(x=\frac{-19}{2}\)
x(3x+2) + (x+1)2 - (2x-5)(2x+5)= -12
(3x2+2x) + (x2+2x+1) - (4x2 - 25) = -12
3x2 + 2x + x2 + 2x + 1 - 4x2 +25 = -12
(3x2 + x2 - 4x2) + ( 2x+2x) + (1+25) = -12
0 + 4x + 26 = -12
4x = -12 - 26
4x = -38
x = -9.5